2019-2020年高中物理 3.6《帶電粒子在勻強磁場中的運動》教案 新人教版選修3-1.doc
《2019-2020年高中物理 3.6《帶電粒子在勻強磁場中的運動》教案 新人教版選修3-1.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中物理 3.6《帶電粒子在勻強磁場中的運動》教案 新人教版選修3-1.doc(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中物理 3.6《帶電粒子在勻強磁場中的運動》教案 新人教版選修3-1 一、教學目標 (一)知識與技能 1、理解洛倫茲力對粒子不做功. 2、理解帶電粒子的初速度方向與磁感應強度的方向垂直時,粒子在勻磁場中做勻速圓周運動. 3、會推導帶電粒子在勻強磁場中做勻速圓周運動的半徑、周期公式,并會用它們解答有關(guān)問題. 知道質(zhì)譜儀的工作原理。 4、知道回旋加速器的基本構(gòu)造、工作原理 、及用途 。 (二)過程與方法 通過綜合運用力學知識、電磁學知識解決帶電粒子在復合場(電場、磁場)中的問題. 培養(yǎng)學生的分析推理能力. (三)情感態(tài)度與價值觀 通過對本節(jié)的學習,充分了解科技的巨大威力,體會科技的創(chuàng)新歷程。 二、重點與難點: 重點:帶電粒子在勻強磁場中做勻速圓周運動的半徑和周期公式,并能用來分析有關(guān)問題. 難點:1.粒子在洛倫茲力作用下做勻速圓周運動. 2.綜合運用力學知識、電磁學知識解決帶電粒子在復合場中的問題. 三、教具:洛倫茲力演示儀、感應線圈、電源、多媒體等 四、教學過程: (一)復習引入 [問題1]什么是洛倫茲力?[磁場對運動電荷的作用力] [問題2]帶電粒子在磁場中是否一定受洛倫茲力?[不一定,洛倫茲力的計算公式為F=qvBsinθ,θ為電荷運動方向與磁場方向的夾角,當θ=90時,F(xiàn)=qvB;當θ=0時,F(xiàn)=0.] [問題3]帶電粒子垂直磁場方向進入勻強磁場時會做什么運動呢?今天我們來學習——帶電粒子在勻強磁場中的運動、質(zhì)譜儀. (二)新課講解---第六節(jié)、帶電粒子在勻強磁場中的運動 【演示】先介紹洛倫茲力演示儀的工作原理,由電子槍發(fā)出的電子射線可以使管內(nèi)的低壓水銀蒸氣發(fā)出輝光,顯示出電子的徑跡。后進行實驗.(并說明相關(guān)問題104-105頁) 教師進行演示實驗. [實驗現(xiàn)象]在暗室中可以清楚地看到,在沒有磁場作用時,電子的徑跡是直線;在管外加上勻強磁場(這個磁場是由兩個平行的通電環(huán)形線圈產(chǎn)生的),電子的徑跡變彎曲成圓形. [教師引導學生分析得出結(jié)論] 當帶電粒子的初速度方向與磁場方向垂直時,粒子在勻強磁場中做勻速圓周運動. 帶電粒子垂直進入勻強磁場中的受力及運動情況分析(動態(tài)課件). 一是要明確所研究的物理現(xiàn)象的條件----在勻強磁場中垂直于磁場方向運動的帶電粒子。二是分析帶電粒子的受力情況,用左手定則明確帶電粒子初速度與所受到的洛倫茲力在同一平面內(nèi),所以只可能做平面運動。三是洛倫茲力不對運動的帶電粒子做功,它的速率不變,同時洛倫茲力的大小也不變。四是根據(jù)牛頓第二定律,洛倫茲力使運動的帶電粒子產(chǎn)生加速度(向心加速度) [出示投影] ①.電子受到怎樣的力的作用?這個力和電子的速度的關(guān)系是怎樣的?(電子受到垂直于速度方向的洛倫茲力的作用.) ②.洛倫茲力對電子的運動有什么作用?(.洛倫茲力只改變速度的方向,不改變速度的大?。? ③.有沒有其他力作用使電子離開磁場方向垂直的平面?(沒有力作用使電子離開磁場方向垂直的平面) ④.洛倫茲力做功嗎?(洛倫茲力對運動電荷不做功) 1.帶電粒子在勻強磁場中的運動 (1)、運動軌跡:沿著與磁場垂直的方向射入磁場的帶電粒子,粒子在垂直磁場方向的平面內(nèi)做勻速圓周運動,此洛倫茲力不做功. 【注意】帶電粒子做圓周運動的向心力由洛倫茲力提供。 通過“思考與討論”( 105頁),使學生理解帶電粒子在勻強磁場中做勻速圓周運動,的軌道半徑r和周期T與粒子所帶電量、質(zhì)量、粒子的速度、磁感應強度有什么關(guān)系。 [出示投影] 一為帶電量q,質(zhì)量為m ,速度為v的帶電粒子垂直進入磁感應強度為B的勻強磁場中,其半徑r和周期T為多大? [問題1]什么力給帶電粒子做圓周運動提供向心力?[洛倫茲力給帶電粒子做圓周運動提供向心力] [問題2]向心力的計算公式是什么?[F=mv2/r] [教師推導]粒子做勻速圓周運動所需的向心力F=m是由粒子所受的洛倫茲力提供的,所以 qvB=mv2/ r由此得出r= T=可得T= (2)、軌道半徑和周期 帶電粒子在勻強磁場中做勻速圓周運動的軌道半徑及周期公式. 1、軌道半徑r = 2、周期T =2πm/ qB 【說明】: (1)軌道半徑和粒子的運動速率成正比. (2)帶電粒子在磁場中做勻速圓周運動的周期跟軌道半徑和運動速率無關(guān). 【討論】:在勻強磁場中如果帶電粒子的運動方向不和磁感應強度方向垂直,它的運動軌道是什么樣的曲線? 分析:當帶電粒子的速度分別為垂直于B的分量v1和平行于B的分量v2,因為v1和B垂直,受到洛倫茲力qv1B,此力使粒子q在垂直于B的平面內(nèi)做勻速圓周運動,v1和B平行,不受洛倫茲力,故粒子在沿B方向上做勻速曲線運動,可見粒子的運動是一等距螺旋運動. 再用洛倫茲力演示儀演示 [出示投影課本例題] 如圖所示,一質(zhì)量為m,電荷量為q的粒子從容器A下方小孔S1飄入電勢差為U的加速電場,然后讓粒子垂直進入磁感應強度為B的磁場中,最后打到底片D上. (1)粒子進入磁場時的速率。 (2)求粒子在磁場中運動的軌道半徑。 解:(1)粒子在S1區(qū)做初速度為零的勻加速直線運動.由動能定理知,粒子在電場中得到的動能等于電場對它所做的功,即 由此可得v=. (2)粒子做勻速圓周運動所需的向心力是由粒子所受的洛倫茲力提供,即qvB=m 所以粒子的軌道半徑為 r=mv/qB= [教師講解]r和進入磁場的速度無關(guān),進入同一磁場時,r∝,而且這些個量中,u、B、r可以直接測量,那么,我們可以用裝置來測量比荷或算出質(zhì)量。 例題在處理上,可以讓學生自己處理,教師引導總結(jié)。為了加深對帶電粒子在磁場中的運動規(guī)律的理解,可以補充例題和適量的練習。注意:在解決這類問題時,如何確定圓心、畫出粒子的運動軌跡、半徑及圓心角,找出幾何關(guān)系是解題的關(guān)鍵。 例題給我們展示的是一種十分精密的儀器------質(zhì)譜儀 補充例題: 如圖所示,半徑為r的圓形空間內(nèi),存在著垂直于紙面向里的勻強磁場,一個帶電粒子(不計重力),從A點以速度v0垂直磁場方向射入磁場中,并從B點射出,已知∠AOB=120,求該帶電粒子在磁場中運動的時間。 分析:首先通過已知條件找到所對應的圓心O′,畫出粒子的運動軌跡并畫出幾何圖形。 解:設粒子在磁場中的軌道半徑為R,粒子的運動軌跡及幾何圖形如圖所示。 粒子在磁場中做勻速圓周運動的向心力由洛倫茲力提供, 有qvB=mv2/R ① 由幾何關(guān)系有:R = r tan60 ② 粒子的運動周期T =2πR/v0 ③ 由圖可知θ=60,得電粒子在磁場中運動的時間 t = T/6 ④ 聯(lián)立以上各式解得:t=rπ/3v0 (3)、質(zhì)譜儀 閱讀課文及例題,回答以下問題: 1.試述質(zhì)譜儀的結(jié)構(gòu). 2.試述質(zhì)譜儀的工作原理. 3.什么是同位素? 4.質(zhì)譜儀最初是由誰設計的? 5.試述質(zhì)譜儀的主要用途. 閱讀后學生回答: 1.質(zhì)譜儀由靜電加速極、速度選擇器、偏轉(zhuǎn)磁場、顯示屏等組成. 2.電荷量相同而質(zhì)量有微小差別的粒子,它們進入磁場后將沿著不同的半徑做圓周運動,打到照相底片不同的地方,在底片上形成若干譜線狀的細條,叫質(zhì)譜線,每一條對應于一定的質(zhì)量,從譜線的位置可以知道圓周的半徑r,如果再已知帶電粒子的電荷量q,就可算出它的質(zhì)量. 3.質(zhì)子數(shù)相同而質(zhì)量數(shù)不同的原子互稱為同位素. 4.質(zhì)譜儀最初是由湯姆生的學生阿斯頓設計. 5.質(zhì)譜儀是一種十分精密的儀器,是測量帶電粒子的質(zhì)量和分析同位素的重要工具.--- ----(1課時) 【過渡語】先從研究物質(zhì)微觀結(jié)構(gòu)的需要出發(fā)提出怎樣大量產(chǎn)生高能帶電粒子的問題,從而引出早期使用的加速器——靜電加速器 2.回旋加速器 (1)直線加速器 ①加速原理:利用加速電場對帶電粒子做正功使帶電的粒子動能增加,即qU =ΔEk ②直線加速器的多級加速:教材圖3.6—5所示的是多級加速裝置的原理圖,由動能定理可知,帶電粒子經(jīng)N級的電場加速后增加的動能,ΔEk=q(U1+U2+U3+U4+…Un) ③直線加速器占有的空間范圍大,在有限的空間內(nèi)制造直線加速器受到一定的限制。 (2)回旋加速器 ①由美國物理學家勞倫斯于1932年發(fā)明。 ②其結(jié)構(gòu)教材圖3.6—6所示。核心部件為兩個D形盒(加勻強磁場)和其間的夾縫(加交變電場) ③加速原理:通過“思考與討論”讓學生自己分析出帶電粒子做勻速圓周運動的周期公式T = 2πm/q B,明確帶電粒子的周期在q、m、B不變的情況下與速度和軌道半徑無關(guān),從而理解回旋加速器的原理。 在學生思考之后,可作如下的解釋:如果其他因素(q、m、B)不變,則當速率v加大時,由r=mv/qB得知圓運動半徑將與v成正比例地增大,因而圓運動周長也將與v成正比例地增大,因此運動一周的時間(周期)仍將保持原值。 最后提到了回旋加速器的效能(可將帶電粒子加速,使其動能達到25 MeV~30 MeV),為狹義相對論埋下了伏筆。 老師再進一步歸納各部件的作用:(如圖) 磁場的作用:交變電場以某一速度垂直磁場方向進入勻強磁場后,在洛倫茲力的作用下做勻速圓周運動,其周期在q、m、B不變的情況下與速度和軌道半徑無關(guān),帶電粒子每次進入D形盒都運動相等的時間(半個周期)后平行電場方向進入電場加速。 電場的作用:回旋加速器的的兩個D形盒之間的夾縫區(qū)域存在周期性變化的并垂直于兩個D形盒正對截面的勻強電場,帶電粒子經(jīng)過該區(qū)域時被加速。 交變電壓的作用:為保證交變電場每次經(jīng)過夾縫時都被加速,使之能量不斷提高,須在在夾縫兩側(cè)加上跟帶電粒子在D形盒中運動周期相同的交變電壓。 帶電粒子經(jīng)加速后的最終能量:(運動半徑最大為D形盒的半徑R) 由R=mv/qB有 v=qBR/m 所以最終能量為 Em=mv2/2 = q2B2R2/2m 討論:要提高帶電粒子的最終能量,應采取什么措施?(可由上式分析) 例:1989年初,我國投入運行的高能粒子回旋加速器可以把電子的能量加速到2.8GeV;若改用直線加速器加速,設每級的加速電壓為U =2.0105V,則需要幾級加速? 解:設經(jīng)n級加速,由neU=E 有 n=E/eU=1.4104(級) (三)對本節(jié)要點做簡要小結(jié). (四)鞏固新課:1、復習本節(jié)內(nèi)容 2、做一做(P98) 3、完成“問題與練習”2、4練習,3作業(yè)。- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 帶電粒子在勻強磁場中的運動 2019-2020年高中物理 3.6帶電粒子在勻強磁場中的運動教案 新人教版選修3-1 2019 2020 年高 物理 3.6 帶電 粒子 磁場 中的 運動 教案 新人
鏈接地址:http://m.jqnhouse.com/p-2370886.html