高中數(shù)學(xué) 第一章 集合與函數(shù)概念 1.3.1.2 函數(shù)的最大(小)值課件 新人教版必修1.ppt
《高中數(shù)學(xué) 第一章 集合與函數(shù)概念 1.3.1.2 函數(shù)的最大(小)值課件 新人教版必修1.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第一章 集合與函數(shù)概念 1.3.1.2 函數(shù)的最大(?。┲嫡n件 新人教版必修1.ppt(33頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第2課時(shí) 函數(shù)的最大(小)值,目標(biāo)定位 1.理解函數(shù)的最大(小)值的概念及其幾何意義.2.能根據(jù)函數(shù)圖象和單調(diào)性,求函數(shù)的最大(小)值.,1.函數(shù)的最大值、最小值,自 主 預(yù) 習(xí),f(x) ≤M,f(x) M,溫馨提示:函數(shù)最大(小)值是相對(duì)于定義域來(lái)說(shuō)的,而不是定義域中某局部的高點(diǎn)和低點(diǎn).,2.求函數(shù)最值的常用方法,(1)圖象法:作出y=f(x)的圖象,觀察最高點(diǎn)與最低點(diǎn),最高 (低)點(diǎn)的縱坐標(biāo)即為函數(shù)的最大(小)值. (2)運(yùn)用已學(xué)的一次函數(shù)、二次函數(shù)、反比例函數(shù)的性質(zhì)與值域. (3)運(yùn)用函數(shù)的單調(diào)性 ①若y=f(x)在區(qū)間[a,b]上是增函數(shù),則ymax=____,ymin= . ②若y=f(x)在區(qū)間[a,b]上是減函數(shù),則ymax=____,ymin=____.,f(b),f(a),f(a),f(b),即 時(shí) 自 測(cè),1.思考判斷(正確的打“√”,錯(cuò)誤的打“”),答案 (1)√ (2) (3)√,解析 由圖象可知,此函數(shù)的最小值是f(-2),最大值是2. 答案 C,3.函數(shù)y=2x2-1,x∈N*的最值情況是( ),A.無(wú)最大值,最小值是1 B.無(wú)最大值,最小值是-1 C.無(wú)最大值,也無(wú)最小值 D.不能確定最大、最小值 解析 因?yàn)閤∈N*,且函數(shù)在(0,+∞)上單調(diào)遞增,故函數(shù)在x=1時(shí)取得最小值,最小值為1,無(wú)最大值. 答案 A,答案 20,類型一 利用圖象求函數(shù)的最值,規(guī)律方法 1.分段函數(shù)的最大值為各段上最大值的最大者,最小值為各段上最小值的最小者,故求分段函數(shù)的最大值或最小值,應(yīng)先求各段上的最值,再比較即得函數(shù)的最大值、最小值. 2.如果函數(shù)的圖象容易作出,畫出分段函數(shù)的圖象,觀察圖象的最高點(diǎn)與最低點(diǎn),并求其縱坐標(biāo)即得函數(shù)的最大值、最小值.,【訓(xùn)練1】 畫出函數(shù)y=x-|x-1|的圖象,并求其最值.,類型二 利用單調(diào)性求函數(shù)的最值,類型三 二次函數(shù)的最大(小)值(互動(dòng)探究),【例3】已知二次函數(shù)f(x)的圖象過(guò)點(diǎn)A(-1,0)、B(3,0)、C(1,-8). (1)求f(x)的解析式; (2)求f(x)在x∈[0,3]上的最值.,規(guī)律方法 1.探求二次函數(shù)在給定閉區(qū)間上的最值問(wèn)題,一般要先作出y=f(x)的草圖,然后根據(jù)圖象的增減性進(jìn)行研究.如果對(duì)稱軸與給定區(qū)間相對(duì)位置不定,注意分類討論. 2.要注意二次函數(shù)的對(duì)稱軸與所給區(qū)間的位置關(guān)系,它是求解二次函數(shù)在已知區(qū)間上最值問(wèn)題的主要依據(jù),并且最大(小)值不一定在頂點(diǎn)處取得.,【遷移探究1】若將例題第(2)中“x∈[0,3]”變?yōu)椤皒∈(-∞,1]”,其他條件不變,求f(x)的最值.,解 由例題,f(x)=2(x-1)2-8,由二次函數(shù)的圖象知,對(duì)稱軸為x=1,因此y=f(x)在(-∞,1]上是減函數(shù),故f(x)min=f(1)=-8,f(x)沒有最大值.,【遷移探究2】 (將定區(qū)間改為動(dòng)區(qū)間)設(shè)函數(shù)y=x2-2x, x∈[-2,a],若函數(shù)的最小值為g(x),求g(x).,類型四 函數(shù)最值的實(shí)際應(yīng)用,規(guī)律方法 1.解實(shí)際應(yīng)用題要弄清題意,從實(shí)際出發(fā),引入數(shù)學(xué)符號(hào),建立數(shù)學(xué)模型,列出函數(shù)關(guān)系式,分析函數(shù)的性質(zhì),從而解決問(wèn)題,要注意自變量的取值范圍. 2.實(shí)際應(yīng)用問(wèn)題中,最大利潤(rùn)、用料最省等問(wèn)題常轉(zhuǎn)化為求函數(shù)最值來(lái)解決,本題轉(zhuǎn)化為二次函數(shù)求最值,利用配方法和分類討論思想使問(wèn)題得到解決.,[課堂小結(jié)] 1.對(duì)函數(shù)最值的三點(diǎn)說(shuō)明 (1)最大(小)值必須是一個(gè)函數(shù)值,是值域中的一個(gè)元素,如函數(shù)y=x2(x∈R)的最小值是0,有f(0)=0. (2)最大(小)值定義中的“任意”是說(shuō)對(duì)于定義域內(nèi)的每一個(gè)值都必須滿足不等式,即對(duì)于定義域內(nèi)的全部元素,都有f(x)≤M(f(x)≥M)成立,也就是說(shuō),函數(shù)y=f(x)的圖象不能位于直線y=M的上(下)方. (3)最大(小)值定義中的“存在”是說(shuō)定義域中至少有一個(gè)實(shí)數(shù)滿足等號(hào)成立,也就是說(shuō)y=f(x)的圖象與直線y=M至少有一個(gè)交點(diǎn).,2.函數(shù)最值與函數(shù)值域的關(guān)系 函數(shù)的值域是一個(gè)集合,最值若存在則屬于這個(gè)集合,即最值首先是一個(gè)函數(shù)值,它是值域的一個(gè)元素.(1)函數(shù)值域一定存在,而函數(shù)并不一定有最大(小)值.(2)如果函數(shù)f(x)在區(qū)間[a,b]上是增(減)函數(shù),則f(x)在區(qū)間[a,b]的左、右端點(diǎn)處分別取得最小(大)值和最大(小)值.,3.二次函數(shù)在閉區(qū)間上的最值 探求二次函數(shù)在給定區(qū)間上的最值問(wèn)題,一般要先作出y=f(x)的草圖,然后根據(jù)圖象的增減性進(jìn)行研究.特別要注意二次函數(shù)的對(duì)稱軸與所給區(qū)間的位置關(guān)系,它是求解二次函數(shù)在已知區(qū)間上最值問(wèn)題的主要依據(jù),并且最大(小)值不一定在頂點(diǎn)處取得.,A.f(-2),f(3) B.0,2 C.f(-2),2 D.f(2),2 解析 由圖象可知,x=-2時(shí),f(x)取得最小值為f(-2),x=3時(shí),f(x)取得最大值f(3)=3. 答案 A,答案 A,3.函數(shù)f(x)=x2+4x+a在區(qū)間(-3,3)上的最小值為________.,解析 f(x)=x2+4x+a=(x+2)2+a-4,因?yàn)椋?x3, 所以f(x)在(-3,3)上的最小值為f(-2)=a-4. 答案 a-4,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學(xué) 第一章 集合與函數(shù)概念 1.3.1.2 函數(shù)的最大小值課件 新人教版必修1 集合 函數(shù) 概念 1.3 1.2 最大 課件 新人 必修
鏈接地址:http://m.jqnhouse.com/p-2437261.html