2019-2020年高中數(shù)學(xué) 第一章 概率與統(tǒng)計(第9課)正態(tài)分布(1)教案 湘教版選修2.doc
《2019-2020年高中數(shù)學(xué) 第一章 概率與統(tǒng)計(第9課)正態(tài)分布(1)教案 湘教版選修2.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 第一章 概率與統(tǒng)計(第9課)正態(tài)分布(1)教案 湘教版選修2.doc(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 第一章 概率與統(tǒng)計(第9課)正態(tài)分布(1)教案 湘教版選修2 教學(xué)目的: 1 掌握正態(tài)分布在實際生活中的意義和作用 2.結(jié)合正態(tài)曲線,加深對正態(tài)密度函數(shù)的理理 3.通過正態(tài)分布的圖形特征,歸納正態(tài)曲線的性質(zhì) 教學(xué)重點:正態(tài)分布曲線的性質(zhì)、標(biāo)準(zhǔn)正態(tài)曲線N(0,1) 教學(xué)難點:通過正態(tài)分布的圖形特征,歸納正態(tài)曲線的性質(zhì) 授課類型:新授課 課時安排:1課時 教 具:多媒體、實物投影儀 內(nèi)容分析: 1.在實際遇到的許多隨機(jī)現(xiàn)象都服從或近似服從正態(tài)分布在上一節(jié)課我們研究了當(dāng)樣本容量無限增大時,頻率分布直方圖就無限接近于一條總體密度曲線,總體密度曲線較科學(xué)地反映了總體分布但總體密度曲線的相關(guān)知識較為抽象,學(xué)生不易理解,因此在總體分布研究中我們選擇正態(tài)分布作為研究的突破口正態(tài)分布在統(tǒng)計學(xué)中是最基本、最重要的一種分布 2.正態(tài)分布是可以用函數(shù)形式來表述的其密度函數(shù)可寫成: , (σ>0) 由此可見,正態(tài)分布是由它的平均數(shù)μ和標(biāo)準(zhǔn)差σ唯一決定的常把它記為 3.從形態(tài)上看,正態(tài)分布是一條單峰、對稱呈鐘形的曲線,其對稱軸為x=μ,并在x=μ時取最大值從x=μ點開始,曲線向正負(fù)兩個方向遞減延伸,不斷逼近x軸,但永不與x軸相交,因此說曲線在正負(fù)兩個方向都是以x軸為漸近線的 4.通過三組正態(tài)分布的曲線,可知正態(tài)曲線具有兩頭低、中間高、左右對稱的基本特征 5.由于正態(tài)分布是由其平均數(shù)μ和標(biāo)準(zhǔn)差σ唯一決定的,因此從某種意義上說,正態(tài)分布就有好多好多,這給我們深入研究帶來一定的困難但我們也發(fā)現(xiàn),許多正態(tài)分布中,重點研究N(0,1),其他的正態(tài)分布都可以通過轉(zhuǎn)化為N(0,1),我們把N(0,1)稱為標(biāo)準(zhǔn)正態(tài)分布,其密度函數(shù)為,x∈(-∞,+∞),從而使正態(tài)分布的研究得以簡化 6.結(jié)合正態(tài)曲線的圖形特征,歸納正態(tài)曲線的性質(zhì)正態(tài)曲線的作圖較難,教科書沒做要求,授課時可以借助幾何畫板作圖,學(xué)生只要了解大致的情形就行了,關(guān)鍵是能通過正態(tài)曲線,引導(dǎo)學(xué)生歸納其性質(zhì) 教學(xué)過程: 一、復(fù)習(xí)引入: 總體密度曲線:樣本容量越大,所分組數(shù)越多,各組的頻率就越接近于總體在相應(yīng)各組取值的概率.設(shè)想樣本容量無限增大,分組的組距無限縮小,那么頻率分布直方圖就會無限接近于一條光滑曲線,這條曲線叫做總體密度曲線. 它反映了總體在各個范圍內(nèi)取值的概率.根據(jù)這條曲線,可求出總體在區(qū)間(a,b)內(nèi)取值的概率等于總體密度曲線,直線x=a,x=b及x軸所圍圖形的面積. 觀察總體密度曲線的形狀,它具有“兩頭低,中間高,左右對稱”的特征,具有這種特征的總體密度曲線一般可用下面函數(shù)的圖象來表示或近似表示: 式中的實數(shù)、是參數(shù),分別表示總體的平均數(shù)與標(biāo)準(zhǔn)差,函數(shù)稱為正態(tài)函數(shù),的圖象稱為正態(tài)曲線. 本節(jié)課,我們將學(xué)習(xí)一種在實際生產(chǎn)、生活中常見的總體密度曲線——正態(tài)曲線 二、講解新課: 1.正態(tài)分布密度函數(shù): ,(σ>0) 其中π是圓周率;e是自然對數(shù)的底;x是隨機(jī)變量的取值;μ為正態(tài)分布的均值;σ是正態(tài)分布的標(biāo)準(zhǔn)差.正態(tài)分布一般記為 2.正態(tài)分布)是由均值μ和標(biāo)準(zhǔn)差σ唯一決定的分布 通過固定其中一個值,討論均值與標(biāo)準(zhǔn)差對于正態(tài)曲線的影響 3.通過對三組正態(tài)曲線分析,得出正態(tài)曲線具有的基本特征是兩頭底、中間高、左右對稱正態(tài)曲線的作圖,書中沒有做要求,教師也不必補(bǔ)上講課時教師可以應(yīng)用幾何畫板,形象、美觀地畫出三條正態(tài)曲線的圖形,結(jié)合前面均值與標(biāo)準(zhǔn)差對圖形的影響,引導(dǎo)學(xué)生觀察總結(jié)正態(tài)曲線的性質(zhì) 4.正態(tài)曲線的性質(zhì): (1)曲線在x軸的上方,與x軸不相交 (2)曲線關(guān)于直線x=μ對稱 (3)當(dāng)x=μ時,曲線位于最高點 (4)當(dāng)x<μ時,曲線上升(增函數(shù));當(dāng)x>μ時,曲線下降(減函數(shù))并且當(dāng)曲線向左、右兩邊無限延伸時,以x軸為漸近線,向它無限靠近 (5)μ一定時,曲線的形狀由σ確定 σ越大,曲線越“矮胖”,總體分布越分散; σ越?。€越“瘦高”.總體分布越集中: 五條性質(zhì)中前三條學(xué)生較易掌握,后兩條較難理解,因此在講授時應(yīng)運用數(shù)形結(jié)合的原則,采用對比教學(xué) 5.標(biāo)準(zhǔn)正態(tài)曲線:當(dāng)μ=0、σ=l時,正態(tài)總體稱為標(biāo)準(zhǔn)正態(tài)總體,其相應(yīng)的函數(shù)表示式是,(-∞<x<+∞) 其相應(yīng)的曲線稱為標(biāo)準(zhǔn)正態(tài)曲線 標(biāo)準(zhǔn)正態(tài)總體N(0,1)在正態(tài)總體的研究中占有重要的地位任何正態(tài)分布的概率問題均可轉(zhuǎn)化成標(biāo)準(zhǔn)正態(tài)分布的概率問題 三、講解范例: 例1.給出下列三個正態(tài)總體的函數(shù)表達(dá)式,請找出其均值μ和標(biāo)準(zhǔn)差σ (1) (2) (3) 答案:(1)0,1;(2)1,2;(3)-1,0.5 四小結(jié) :總體密度曲線——正態(tài)曲線——標(biāo)準(zhǔn)正態(tài)曲線 五、課后作業(yè): 六、板書設(shè)計(略) 七、課后記:- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué) 第一章 概率與統(tǒng)計第9課正態(tài)分布1教案 湘教版選修2 2019 2020 年高 數(shù)學(xué) 概率 統(tǒng)計 正態(tài)分布 教案 湘教版 選修
鏈接地址:http://m.jqnhouse.com/p-2597289.html