2019-2020年高中數(shù)學《生活中的優(yōu)化問題舉例》教案6 新人教A版選修2-2.doc
《2019-2020年高中數(shù)學《生活中的優(yōu)化問題舉例》教案6 新人教A版選修2-2.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學《生活中的優(yōu)化問題舉例》教案6 新人教A版選修2-2.doc(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學《生活中的優(yōu)化問題舉例》教案6 新人教A版選修2-2 教學目標: 1. 使利潤最大、用料最省、效率最高等優(yōu)化問題,體會導數(shù)在解決實際問題中的作用。 2. 提高將實際問題轉(zhuǎn)化為數(shù)學問題的能力。 教學重點:利用導數(shù)解決生活中的一些優(yōu)化問題。 教學難點:利用導數(shù)解決生活中的一些優(yōu)化問題。 教學過程: 一.創(chuàng)設情景 生活中經(jīng)常遇到求利潤最大、用料最省、效率最高等問題,這些問題通常稱為優(yōu)化問題.通過前面的學習,我們知道,導數(shù)是求函數(shù)最大(?。┲档挠辛ぞ撸@一節(jié),我們利用導數(shù),解決一些生活中的優(yōu)化問題。 二.新課講授 導數(shù)在實際生活中的應用主要是解決有關函數(shù)最大值、最小值的實際問題,主要有以下幾個方面:1、與幾何有關的最值問題;2、與物理學有關的最值問題;3、與利潤及其成本有關的最值問題;4、效率最值問題。 解決優(yōu)化問題的方法:首先是需要分析問題中各個變量之間的關系,建立適當?shù)暮瘮?shù)關系,并確定函數(shù)的定義域,通過創(chuàng)造在閉區(qū)間內(nèi)求函數(shù)取值的情境,即核心問題是建立適當?shù)暮瘮?shù)關系。再通過研究相應函數(shù)的性質(zhì),提出優(yōu)化方案,使問題得以解決,在這個過程中,導數(shù)是一個有力的工具。 利用導數(shù)解決優(yōu)化問題的基本思路: 建立數(shù)學模型 解決數(shù)學模型 作答 用函數(shù)表示的數(shù)學問題 優(yōu)化問題 用導數(shù)解決數(shù)學問題 優(yōu)化問題的答案 三.典例分析 例1.汽油的使用效率何時最高 我們知道,汽油的消耗量(單位:L)與汽車的速度(單位:km/h)之間有一定的關系,汽油的消耗量是汽車速度的函數(shù).根據(jù)你的生活經(jīng)驗,思考下面兩個問題: (1) 是不是汽車的速度越快,汽車的消耗量越大? (2) “汽油的使用率最高”的含義是什么? 分析:研究汽油的使用效率(單位:L/m)就是研究秋游消耗量與汽車行駛路程的比值.如果用表示每千米平均的汽油消耗量,那么,其中,表示汽油消耗量(單位:L),表示汽油行駛的路程(單位:km).這樣,求“每千米路程的汽油消耗量最少”,就是求的最小值的問題 通過大量的統(tǒng)計數(shù)據(jù),并對數(shù)據(jù)進行分析、研究,人們發(fā)現(xiàn),汽車在行駛過程中,汽油平均消耗率(即每小時的汽油消耗量,單位:L/h)與汽車行駛的平均速度(單位:km/h)之間有如圖所示的函數(shù)關系。 從圖中不能直接解決汽油使用效率最高的問題.因此,我們首先需要將問題轉(zhuǎn)化為汽油平均消耗率(即每小時的汽油消耗量,單位:L/h)與汽車行駛的平均速度(單位:km/h)之間關系的問題,然后利用圖像中的數(shù)據(jù)信息,解決汽油使用效率最高的問題 解:因為 這樣,問題就轉(zhuǎn)化為求的最小值.從圖象上看,表示經(jīng)過原點與曲線上點的直線的斜率.進一步發(fā)現(xiàn),當直線與曲線相切時,其斜率最?。诖饲悬c處速度約為90。 因此,當汽車行駛距離一定時,要使汽油的使用效率最高,即每千米的汽油消耗量最小,此時的車速約為90.從數(shù)值上看,每千米的耗油量就是圖中切線的斜率,即,約為 L。 例2.磁盤的最大存儲量問題 計算機把數(shù)據(jù)存儲在磁盤上。磁盤是帶有磁性介質(zhì)的圓盤,并有操作系統(tǒng)將其格式化成磁道和扇區(qū)。磁道是指不同半徑所構(gòu)成的同心軌道,扇區(qū)是指被同心角分割所成的扇形區(qū)域。磁道上的定長弧段可作為基本存儲單元,根據(jù)其磁化與否可分別記錄數(shù)據(jù)0或1,這個基本單元通常被稱為比特(bit)。 為了保障磁盤的分辨率,磁道之間的寬度必需大于,每比特所占用的磁道長度不得小于。為了數(shù)據(jù)檢索便利,磁盤格式化時要求所有磁道要具有相同的比特數(shù) 問題:現(xiàn)有一張半徑為的磁盤,它的存儲區(qū)是半徑介于與之間的環(huán)形區(qū)域. (1) 是不是越小,磁盤的存儲量越大? (2) 為多少時,磁盤具有最大存儲量(最外面的磁道不存儲任何信息)? 解:由題意知:存儲量=磁道數(shù)每磁道的比特數(shù)。 設存儲區(qū)的半徑介于與R之間,由于磁道之間的寬度必需大于,且最外面的磁道不存儲任何信息,故磁道數(shù)最多可達。由于每條磁道上的比特數(shù)相同,為獲得最大存儲量,最內(nèi)一條磁道必須裝滿,即每條磁道上的比特數(shù)可達。所以,磁盤總存儲量 (1) 它是一個關于的二次函數(shù),從函數(shù)解析式上可以判斷,不是越小,磁盤的存儲量越大。 (2) 為求的最大值,計算。 令,解得 當時,;當時,. 因此時,磁盤具有最大存儲量。此時最大存儲量為 例3.飲料瓶大小對飲料公司利潤的影響 (1)你是否注意過,市場上等量的小包裝的物品一般比大包裝的要貴些? (2)是不是飲料瓶越大,飲料公司的利潤越大? 【背景知識】:某制造商制造并出售球型瓶裝的某種飲料.瓶子的制造成本是 分,其中 是瓶子的半徑,單位是厘米。已知每出售1 mL的飲料,制造商可獲利 0.2 分,且制造商能制作的瓶子的最大半徑為 6cm。 問題:(1)瓶子的半徑多大時,能使每瓶飲料的利潤最大? (2)瓶子的半徑多大時,每瓶的利潤最??? 解:由于瓶子的半徑為,所以每瓶飲料的利潤是 令 解得 (舍去) 當時,;當時,. 當半徑時,它表示單調(diào)遞增,即半徑越大,利潤越高; 當半徑時, 它表示單調(diào)遞減,即半徑越大,利潤越低。 (1) 半徑為cm 時,利潤最小,這時,表示此種瓶內(nèi)飲料的利潤還不夠瓶子的成本,此時利潤是負值。 (2) 半徑為cm時,利潤最大。 換一個角度:如果我們不用導數(shù)工具,直接從函數(shù)的圖像上觀察,會有什么發(fā)現(xiàn)? 有圖像知:當時,,即瓶子的半徑為3cm時,飲料的利潤與飲料瓶的成本恰好相等;當時,利潤才為正值 當時,,為減函數(shù),其實際意義為:瓶子的半徑小于2cm時,瓶子的半徑越大,利潤越小,半徑為cm 時,利潤最小。 說明: 四.課堂練習 1.用總長為14.8m的鋼條制作一個長方體容器的框架,如果所制作的容器的底面的一邊比另一邊長0.5m,那么高為多少時容器的容積最大?并求出它的最大容積.(高為1.2 m,最大容積) 5.課本 練習 五.回顧總結(jié) 建立數(shù)學模型 1.利用導數(shù)解決優(yōu)化問題的基本思路: 解決數(shù)學模型 作答 用函數(shù)表示的數(shù)學問題 優(yōu)化問題 用導數(shù)解決數(shù)學問題 優(yōu)化問題的答案 2.解決優(yōu)化問題的方法:通過搜集大量的統(tǒng)計數(shù)據(jù),建立與其相應的數(shù)學模型,再通過研究相應函數(shù)的性質(zhì),提出優(yōu)化方案,使問題得到解決.在這個過程中,導數(shù)往往是一個有利的工具 六.布置作業(yè)- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關 鍵 詞:
- 生活中的優(yōu)化問題舉例 2019-2020年高中數(shù)學生活中的優(yōu)化問題舉例教案6 新人教A版選修2-2 2019 2020 年高 數(shù)學 生活 中的 優(yōu)化 問題 舉例 教案 新人 選修
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://m.jqnhouse.com/p-2713139.html