(浙江專用)2020版高考數(shù)學(xué)一輪復(fù)習(xí) 專題6 數(shù)列 第41練 數(shù)列的前n項(xiàng)和練習(xí)(含解析).docx
《(浙江專用)2020版高考數(shù)學(xué)一輪復(fù)習(xí) 專題6 數(shù)列 第41練 數(shù)列的前n項(xiàng)和練習(xí)(含解析).docx》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專用)2020版高考數(shù)學(xué)一輪復(fù)習(xí) 專題6 數(shù)列 第41練 數(shù)列的前n項(xiàng)和練習(xí)(含解析).docx(4頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第41練 數(shù)列的前n項(xiàng)和 [基礎(chǔ)保分練] 1.已知數(shù)列{an}中,a1=2,=2,則數(shù)列{an}的前n項(xiàng)和Sn等于( ) A.32n-3n-3 B.52n-3n-5 C.32n-5n-3 D.52n-5n-5 2.數(shù)列{an}中,an=(-1)nn,則a1+a2+…+a10等于( ) A.5B.-5C.10D.-10 3.(2019杭州模擬)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a9=a12+6,a2=4,則數(shù)列的前10項(xiàng)和為( ) A.B.C.D. 4.定義函數(shù)f(x)如下表,數(shù)列{an}滿足an+1=f(an),n∈N*.若a1=2,則a1+a2+a3+…+a2019等于( ) x 1 2 3 4 5 6 f(x) 3 5 4 6 1 2 A.7042B.7058C.7064D.7262 5.已知數(shù)列{an}中,a1=1,a2=,a3=,a4=,…,an=,則數(shù)列{an}的前n項(xiàng)和Sn等于( ) A. B. C. D. 6.(2019嘉興模擬)如果函數(shù)f(x)=kx-1(k≠0,x∈N*),Sn=f(1)+f(2)+…+f(n),若f(1),f(3),f(13)成等比數(shù)列,則( ) A.2Sn-7≤5f(n) B.2Sn+7≤5f(n) C.2Sn-7≥5f(n) D.2Sn+7≥5f(n) 7.已知正數(shù)數(shù)列{an}是公比不等于1的等比數(shù)列,且lga1+lga2019=0,若f(x)=,則f(a1)+f(a2)+…+f(a2019)等于( ) A.2018B.4036C.2019D.4038 8.在有窮數(shù)列{an}中,Sn為{an}的前n項(xiàng)和,若把稱為數(shù)列{an}的“優(yōu)化和”,現(xiàn)有一個(gè)共2017項(xiàng)的數(shù)列{an}:a1,a2,…,a2017,若其“優(yōu)化和”為2018,則有2018項(xiàng)的數(shù)列:1,a1,a2,…,a2017的“優(yōu)化和”為( ) A.2016B.2017C.2018D.2019 9.(2018浙江鎮(zhèn)海中學(xué)模擬)設(shè)數(shù)列{an}滿足a1+3a2+…+(2n-1)an=2n.則{an}的通項(xiàng)an=________,數(shù)列的前n項(xiàng)和是________. 10.已知數(shù)列{an}中,a1=1,a3=6,且an=an-1+λn(n≥2).則數(shù)列的前n項(xiàng)和Tn=________. [能力提升練] 1.已知數(shù)列{an}中第15項(xiàng)a15=256,數(shù)列{bn}滿足log2b1+log2b2+…+log2b14=7,且an+1=anbn,則a1等于( ) A.B.1C.2D.4 2.已知f(x)=,則f+f+…+f等于( ) A.2016B.2017C.2018D.2019 3.(2019寧波模擬)已知Sn為數(shù)列{an}的前n項(xiàng)和,若a1=2且Sn+1=2Sn,設(shè)bn=log2an,則++…+的值是( ) A. B. C. D. 4.已知數(shù)列{an},定義數(shù)列{an+1-2an}為數(shù)列{an}的“2倍差數(shù)列”,若{an}的“2倍差數(shù)列”的通項(xiàng)公式為an+1-2an=2n+1,且a1=2,若數(shù)列{an}的前n項(xiàng)和為Sn,則S33等于( ) A.238+1 B.239+2 C.238+2 D.239 5.已知數(shù)列{an}對(duì)任意n∈N*,總有a1a2…an=2n+1成立,記bn=(-1)n+1,則數(shù)列{bn}的前2n項(xiàng)和為________. 6.已知F(x)=f-2是R上的奇函數(shù),an=f(0)+f+…+f+f(1),n∈N*,則數(shù)列{an}的通項(xiàng)公式為____________. 答案精析 基礎(chǔ)保分練 1.B 2.A 3.B 4.C 5.D 6.D 7.C 8.C 9. 10. 能力提升練 1.C [由log2b1+log2b2+…+log2b14=log2(b1b2…b14)=7,得b1b2…b14=27, 又an+1=anbn,即bn=,有b1b2…b14=…==,故a1=2.] 2.C [∵f(x)+f(1-x)=+=2, ∴f+f+…+f=1 0092=2 018.] 3.B [由Sn+1=2Sn可知,數(shù)列{Sn}是首項(xiàng)為S1=a1=2,公比為2的等比數(shù)列,所以Sn=2n.當(dāng)n≥2時(shí),an=Sn-Sn-1=2n-2n-1=2n-1,bn=log2an= 當(dāng)n≥2時(shí),==-, 所以++…+=1+1-+-+…+-=2-=. 故選B.] 4.B [根據(jù)題意得an+1-2an=2n+1,a1=2, ∴-=1,∴數(shù)列表示首項(xiàng)為1,公差d=1的等差數(shù)列, ∴=1+(n-1)=n,∴an=n2n, ∴Sn=121+222+323+…+n2n, ∴2Sn=122+223+324+…+n2n+1, ∴-Sn=2+22+23+24+…+2n-n2n+1 =-n2n+1=-2+2n+1-n2n+1, =-2+(1-n)2n+1, ∴Sn=(n-1)2n+1+2, S33=(33-1)233+1+2=239+2,故選B.] 5. 解析 ∵a1a2…an=2n+1,① 當(dāng)n=1時(shí),a1=3; 當(dāng)n≥2時(shí),a1a2…an-1=2n-1,② ①②兩式相除得an=, 當(dāng)n=1時(shí),a1=3適合上式. ∴an=, ∴bn=(-1)n+1 =(-1)n+1 =(-1)n+1, T2n=-+-+…+- =1-=. 6.an=2(n+1) 解析 由題意知F(x)=f-2是R上的奇函數(shù),故F(-x)=-F(x), 代入得f+f=4, x∈R,即f(x)+f(1-x)=4, an=f(0)+f+…+f+f(1), an=f(1)+f+…+f+f(0), 倒序相加可得2an=4(n+1), 即an=2(n+1).- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 浙江專用2020版高考數(shù)學(xué)一輪復(fù)習(xí) 專題6 數(shù)列 第41練 數(shù)列的前n項(xiàng)和練習(xí)含解析 浙江 專用 2020 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 專題 41 練習(xí) 解析
鏈接地址:http://m.jqnhouse.com/p-3935611.html