【溫馨提示】 dwg后綴的文件為CAD圖,可編輯,無水印,高清圖,,壓縮包內文檔可直接點開預覽,需要原稿請自助充值下載,請見壓縮包內的文件及預覽,所見才能所得,請細心查看有疑問可以咨詢QQ:414951605或1304139763
編號
無錫太湖學院
畢業(yè)設計(論文)
相關資料
題目: 齒輪泵的結構改進設計
信機 系 機械工程及自動化專業(yè)
學 號: 0923807
學生姓名: 陳 浩
指導教師:何雪明(職稱:副教授 )
(職稱: )
2013年5月25日
目 錄
一、畢業(yè)設計(論文)開題報告
二、畢業(yè)設計(論文)外文資料翻譯及原文
三、畢業(yè)論文(論文)計劃、進度、檢查及落實表
四、實習鑒定表
無錫太湖學院
畢業(yè)設計(論文)
開題報告
題目: 齒輪泵結構改進設計
信機 系 機械工程及自動化 專業(yè)
學 號: 0923807
學生姓名: 陳 浩
指導教師: 何雪明(職稱:副教授 )
(職稱 )
2012年11月10日
課題來源
課題來源于工程生產實際。
齒輪傳動因其具有傳動功率大、效率比較高、結構相當緊湊、傳動比穩(wěn)定精確等優(yōu)點而應用在化工、汽車、船舶、航空、能源等國民經濟的重要領域中。齒輪泵是液壓傳動中一種廣泛應用的液壓機構。在液壓傳動與控制技術中占有很大比重,其主要特點是結構簡單、體積小、重量輕、自吸性好、耐污染、使用可靠、壽命較長、制造容易、維修方便、價格便宜。但漸開線型齒輪泵也有不少缺點,主要是流量和困油引起的壓力脈動較大、噪聲較大、排量不可變、高溫效率低等。這些缺點在某些結構經過改進的齒輪泵上己得到了很大的改善。近年來,齒輪泵的工作壓力有了很大提高,額定壓力可達到25Mpa,最高壓力可達31.5Mpa。另外,產品結構也有不少改進,特別是三聯(lián)、四聯(lián)齒輪泵的問世,部分地彌補了齒輪泵不能變量的缺點。而復合齒輪泵的出現(xiàn)使齒輪泵的流量均勻性得到了很大的改善。其使用領域也在不斷擴大,許多過去使用柱塞泵的液壓設備也已改用齒輪泵(如工程起重機等)。
科學依據(包括課題的科學意義;國內外研究概況、水平和發(fā)展趨勢;應用前景等)
由于齒輪泵在液壓傳動系統(tǒng)中應用廣泛, 因此, 吸引了大量學者對其進行研究。目前, 國內外學者關于齒輪泵的研究主要集中在以下方面: ( 1)齒輪參數及泵體結構的優(yōu)化設計; ( 2) 齒輪泵間隙優(yōu)化及補償技術 ; ( 3) 困油沖擊及卸荷措施 ; ( 4) 齒輪泵流量品質研究 ; ( 5) 齒輪泵的噪聲控制技術; ( 6) 輪齒表面涂覆技術; ( 7) 齒輪泵的變量方法研究; ( 8) 齒輪泵的壽命及其影響因素研究 ; ( 9) 齒輪泵液壓力分析及其高壓化的途徑 ; ( 10) 水介質齒輪泵基礎理論研究。
提高齒輪泵的工作壓力是齒輪泵的一個發(fā)展方向, 而提高工作壓力所帶來的問題是: ( 1) 軸承壽命大大縮短; ( 2) 泵泄漏加劇, 容積效率下降。產生這2 個問題的根本原因在于齒輪上作用了不平衡的徑向液壓力, 并且工作壓力越高, 徑向液壓力越大。
目前, 國內外學者針對以上2 個問題所進行的研究是: ( 1) 對齒輪泵的徑向間隙進行補償; ( 2)減小齒輪泵的徑向液壓力, 如優(yōu)化齒輪參數、縮小排液口尺寸等; ( 3) 提高軸承承載能力, 如采用復合材料滑動軸承代替滾針軸承等。但這些措施都沒從根本上解決問題。
目前液壓傳動系統(tǒng)的發(fā)展目標是:縮小體積、快速響應、降低噪音。因此要想達到這個目的,齒輪泵除了要穩(wěn)住其在潤滑系統(tǒng)、中低壓定量系統(tǒng)的絕對優(yōu)勢地位,另外還需要向以下幾個方面縱深發(fā)展:(1)高壓化 (2)低流量脈動 (3)低噪音 (4)大排量 (5)變排量。
研究內容
1、收集齒輪泵的相關資料,確定方案。
2、完成齒輪泵的三維結構模型建模,并制作成二維圖。
3、根據收集的資料,制作不同齒廓的齒輪
4、借助有限元分析對不同齒廓的齒輪泵進行流體力學分析。
5、利用流體力學軟件fluent分析各類型齒輪泵的流體力學性能的優(yōu)劣。
6、選取綜合性能最好的齒輪泵,并提出優(yōu)化方案,
擬采取的研究方法、技術路線、實驗方案及可行性分析
查閱各種資料,了解齒輪泵的工作原理、結構、流量計算方法和優(yōu)化設計方法。學會熟悉UG軟件對產品結構的設計,并了解齒輪泵的運動特性,對其不同齒廓進行有限元分析,比較不同齒廓的優(yōu)劣,在綜合性性能較好的齒輪泵上提出優(yōu)化方案。
研究計劃及預期成果
研究計劃:
2012年11月1日-2012年12月25日:按照任務書要求查閱論文相關參考資料,填寫畢業(yè)設計開題報告書。
2013年1月11日-2013年3月5日:填寫畢業(yè)實習報告。
2013年3月8日-2013年3月14日:按照要求修改畢業(yè)設計開題報告。
2013年3月15日-2013年3月21日:學習并翻譯一篇與畢業(yè)設計相關的英文材料。
2013年3月22日-2013年4月11日:齒輪泵建模、有限元分析、比較優(yōu)劣。
2013年4月12日-2013年4月25日:齒廓設計、裝配圖和說明書。
2013年4月26日-2013年5月21日:畢業(yè)論文撰寫和修改工作。
預期成果:
工藝規(guī)程:有限元分析資料,齒輪泵總圖及主要零件圖,設計說明書
特色或創(chuàng)新之處
運用UG對產品完成三維建模,制作完成二維圖形,通過對二維圖形有限元結構分析,盡早發(fā)現(xiàn)產品設計的缺陷,及時更改問題和缺陷,并對其優(yōu)化,以提高齒輪泵的性能
已具備的條件和尚需解決的問題
在比較熟悉運用UG的基礎上制作齒輪泵的二維圖,能運用Gambit和Fluent軟件對不同齒輪泵的齒廓分析比較,總結出不同齒廓的優(yōu)劣,尚需解決的是,如果在硬件條件允許下,可以嘗試對三維的軟件進行流體分析,更能準確的了解不同齒輪泵的優(yōu)劣。
指導教師意見
指導教師簽名:
2012年11月10日
教研室(學科組、研究所)意見
教研室主任簽名:
年 月 日
系意見
主管領導簽名:
年 月 日
無錫太湖學院
畢業(yè)設計(論文)外文資料翻譯
信機 系 機械工程及自動化 專業(yè)
院 (系): 信 機 系
專 業(yè): 機械工程及自動化
班 級: 機械97
姓 名: 陳 浩
學 號: 0923807
外文出處: 機械專業(yè)英語教程
附 件: 1.譯文;2.原文;3.評分表
2013年5月20日
英文原文
4.3 Flow in an Oil Injected Screw Compressor
Figure 4-27 Comparison of pressure change for turbulent and laminar flow calculations
The difference in the compressor flow obtained from laminar and turbulent calcu-lations is presented in Figure 4-28. The mass flows at suction and discharge are given as functions of the shaft angle. On average, 4% higher low is calculated with the turbulent model. The difference was greater at the discharge end of the compressor, both in the mean value and in the amplitude. This agrees with the re-sults obtained from the approximate calculations where turbulent transport through clearances is significant. The difference in flow obtained at the suction end is, on average, less than 3%. This shows that a compressor with a large suc-tion opening has no significant dynamical losses, although turbulence exists in the compressor low pressure domains. It is expected that the difference between the laminar and turbulent flow calculations will be smaller for higher discharge pres-sures and lower compressor speeds.
Figure 4-28 Comparison of fluid flow at inlet and exit of screw compressor
The integral parameters obtained from both the laminar and turbulent numerical models are presented in Table 4-2. According to these results, it can be concluded that turbulence has some influence on the screw compressor. Its effect is greater at lower pressure ratios and low compressor speeds.
More detailed insights into the results obtained from the k-model of turbulence can be found in the following four figures; Figure 4-29 shows the kinetic energy of turbulence. The dissipation rate is presented in Figure 4-30, the turbulent vis-cosity in Figure 4-31 and the dimensionless distance from wall y+ is given in Figure 4-32.
Figure 4-29 Kinetic energy of turbulence within the screw compressor
4.3 Flow in an Oil Injected Screw Compressor
Figure 4-30 Dissipation rate within the screw compressor
Figure 4-31 Turbulent viscosity within the screw compressor
Figure 4-32 Dimensionless distances from the wall within the compressor
The results in all these diagrams are presented in horizontal sections through the blow hole areas on the suction and discharge side of the compressor, in vertical sections through the rotor axes and in cross sections at suction and discharge. The kinetic energy of turbulence, dissipation, turbulent viscosity and y+ are all high for the lobes exposed to the suction domains. All these gradually die out towards discharge. The dissipation rate is extremely high in the clearance gaps between the rotors, as shown in Figure 4-30, while in the other domains it is significantly lower. On the other hand, y+ is small in the clearance gaps while in the main do-mains at suction it has higher values, as shown in Figure 4-32.
4.3.5 The Influence of the Mesh Size on Calculation Accuracy
Most calculations in this book are presented for numerical meshes with an average number of 30 cells along one interlobe and a similar number of time steps selected for the rotor to rotate between two interlobe positions. The numerical mesh for thecompressor in this example consists of about 450,000 cells of which About 322,000 numerical cells define the rotor domains. This was a convenient numberof cells to use with a PC computer with an ATHLON 800 processor and 1GB of RAM, which was used for this study. Although the results obtained on that mesh appeared to be satisfactory and agreed well with the experimental data, an investi-gation of the influence of the mesh size on the calculation accuracy had to be con-ducted. For that reason, two additional meshes were generated for the same com-pressor. A smaller one was generated with 20 points along the rotor interlobe, which gave 190,000 cells on both rotors while the other compressor parts were mapped with almost the same number of cells as originally. The overall number of numerical cells was about 353,000. A lower number of cells on the rotors results in a geometry, which does not follow the rotor shape precisely, and the intercon-nection between rotors would possibly become inappropriate. This number of nu-merical cells is probably the lowest for which reliable results can be obtained. Thelargest numerical mesh generated for this investigation consists of 45 numerical cells along the rotor interlobe. That gave 515,520 cell on the rotors and 637,000 cells for the entire compressor domain. This was the biggest numerical mesh that could be loaded into the available computer memory without disc swapping dur-ing the solution. These three numerical meshes are presented in Figure 4-33 in the cross section perpendicular to the rotor axes.
Figure 4-33 Three different mesh sizes for the same compressor
The results of the calculations are presented in Figure 4-34 in the form of a pres-sure-angle diagram, and in Figure 4-36 as a discharge flow-angle diagram. The first diagram shows how the calculated working pressures for all three investi-gated mesh sizes agree with the measurements. The lowest number of cells gives the highest pressure in the working chamber and vice versa. As a result of that, the consumed power is changed slightly, from 42 kW obtained with the smallest mesh to slightly less then 41 kW for the largest mesh. The difference between the two is less then 3%. This situation is shown in Figure 4-35. The diagram shows the larg-est difference within the cycle to be in the discharge area of the compressor. Some difference is also visible in the middle area of the diagram which seems to be a consequence of the leakage flows obtained with smaller meshes between the ro-tors. In that area, the mesh is probably too coarse to capture all the oscillations which appear in the flow.
Figure 4-34 P-alpha diagrams for three different mesh sizes
Figure 4-35 Compressor power calculated with three different mesh sizes
4.3 Flow in an Oil Injected Screw Compressor
Figure 4-36 Discharge flow rates for different mesh sizes
Figure 4-37 Integral flow rate and Specific power obtained with different mesh sizes
Diagrams of discharge flow as a function of rotation angle are given in Figure4-36. The coarser mesh shows less oscillation in the flow then the finer meshes. However, the mean value of the flow remained the same for all three mesh sizes, as shown in Figure 4-37. Specific power is calculated from the values obtained previously. It shows a slight fall in value as the number of computational cells is increased.
The results obtained with the three different mesh sizes for the compressor in-vestigated here give the impression that the calculation conducted for the com-pressor on an average size of the mesh with 25 to 30 numerical cells along the ro-tor interlobe is sufficiently accurate.
中文譯文
4.3 噴油螺桿壓縮機的流量
圖4-27計算比較湍流和層流壓力變化
如圖4-28為在計算吸氣和排氣的質量流量功能軸角中獲得的壓縮機流從層流和湍流差異。總體而言,湍流模型比流從層流高4%,無論是在平均值和振幅,壓縮機的排出端是最大的,通過計算近似結果獲得間隙顯著的湍流輸送的重。在吸入端獲得的流量差異的平均值,小于3%。這表明,具有大的吸入端的壓縮機吸氣開口沒有任何顯著的動力損失,雖然在壓縮機低壓域存在湍流。這是預期的層流和湍流之間的差異計算將提高排氣壓力和減小壓縮機速度。
圖4-28根據流體的流動比較螺桿式壓縮機的入口和出口
從層流和湍流數值模型的積分獲得的參數,如表4-2中。根據這些結果,可以得出結論,在湍流的螺桿式壓縮機上有一定的影響。其效果是在壓力越小,流速越大。從第k湍流模型獲得的結果的更詳細的分析,可以發(fā)現(xiàn)在以下四個數字,如圖4-29的湍流的動能。圖4-30,圖4-31動蕩對粘度和無量綱距離墻Y +耗散率,如圖4-32。
圖4-29螺桿壓縮機內的湍流動能
圖4-30螺桿式壓縮機內的損耗率
圖4-31螺桿壓縮機內的湍流粘度
圖4-32從墻壁內壓縮機的量綱距離通過吸入閥和排出側的壓縮機的結果列于所有這些圖中,在通過轉子軸的吸入閥和排出的橫截面的垂直剖面上的吹孔區(qū)域的水平部分。動蕩,耗散,湍流粘度和y+的動能都是高暴露在吸域葉上,所有這些逐漸消亡走向放電。耗散率非常高,轉子之間的間隙差距,如圖4-30所示,而在其他領域,它是顯著較低。另一方面,如圖4-32所示,+小的間隙中,在主電源處于吸入它具有較高的值。
4.3.5 網格大小對計算精度的影響
在計算這本書中的大部分平均30個細胞的數量沿一個和類似用于轉子之間旋轉兩位置的數量的選擇步驟嚙合。在這個例子中包括約45萬個細胞數值網格,其中約322,000數字單元格定義轉子域。這是用于這項研究為了方便使用的細胞數量與PC電腦的Athlon800處理器和1GB的RAM,雖然網格上,得到的結果似乎是令人滿意的,并與實驗數據相同,但在康秀紅,杜強,李殿中,李依依的調查中,影響網格尺寸的計算精度的到的結果是可靠的。本次調查由45個數字單元格沿轉子的數值t網。這給了整個壓縮機515,520細胞轉子和637,000細胞領域。這是最大的數值的網格,可以在裝入光盤交換過程中溶液沒有可用的計算機內存。圖4-33中介紹這在轉子軸垂直的截面中的三個數值的嚙合。圖4-37獲得不同的網目尺寸和比功率的積分流量。圖36中給出的是作為旋轉角度的函數的排出流,粗網格顯示振蕩流,但是,所有三個網目尺寸仍然是流量的平均值,如在圖4-37所示,從先前得到的值計算比功率。它顯示了輕微的下降值,計算增加的細胞數目。得到的結果是在研究壓縮機的平均面積為25至30數值RO涵道。出于這個原因,產生相同的壓縮機的是兩個額外的嚙合。產生一個較小以20分沿的轉子,這兩個轉子給了19萬個細胞,而其它的壓縮機部件幾乎相同被最初的細胞數量映射。數值細胞的總人數為353,000左右。在較低的數字的單元格的幾何形狀,這并不精確地說,按照轉子的形狀和轉子之間的互連,連接在轉子上的結果就可能是不恰當的。這個數值的細胞的數量可能是最低的,得到的結果是可靠的。本次調查由45個數字單元格沿轉子的數值t網。這給了整個壓縮機515,520細胞轉子和637,000細胞領域。這是最大的數值的網格,可以在裝入光盤交換過程中溶液沒有可用的計算機內存。圖4-33中介紹這在轉子軸垂直的截面中的三個數值的嚙合。
圖4-33網格大小相同的三鐘不同的壓縮機
在圖4-34中壓力角圖的計算結果,圖4-36中的排放流角圖。第一個圖表顯示如何計算研究所有三個門控網目尺寸的工作壓力。最低的細胞數量給出了工作腔的最高壓力,反之亦然。消耗功率略有變化,從42千瓦獲得的最小的最大網格,略小宇1千瓦。兩者之間的差異小于3%。這種情況如圖4-35所示,該圖顯示了在周期內所述壓縮機的排放區(qū)的最大的差異。這些差異也顯示在圖的中間區(qū)域,這是泄露流器RO-小網格之間獲得的結果。在這方面,可能是網格捕捉太粗以致所有的震蕩出現(xiàn)流動。
圖4-34 三種不同網格大小的P-阿爾法圖
圖4-35 三種不同的網格尺寸壓縮機功率計算
圖4-36 不同網格尺寸放電流速
圖4-37 獲得的不同網目尺寸和比功率的積分流量
圖36中給出的是作為旋轉角度的函數的排出流,粗網格顯示振蕩流,但是,所有三個網目尺寸仍然是流量的平均值,如在圖4-37所示,從先前得到的值計算比功率。它顯示了輕微的下降值,計算增加的細胞數目。得到的結果是在研究壓縮機的平均面積為25至30數值RO-器的細胞沿網格進行計算三種不同的網目尺寸的壓縮機是足夠準確的。