2019-2020年高中數(shù)學(xué)第一章集合與函數(shù)概念1.1集合集合的表示課后訓(xùn)練新人教A版必修.doc
《2019-2020年高中數(shù)學(xué)第一章集合與函數(shù)概念1.1集合集合的表示課后訓(xùn)練新人教A版必修.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)第一章集合與函數(shù)概念1.1集合集合的表示課后訓(xùn)練新人教A版必修.doc(3頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)第一章集合與函數(shù)概念1.1集合集合的表示課后訓(xùn)練新人教A版必修 千里之行 始于足下 1.方程組的解集是( ). A.(5,4) B.{5,-4} C.{(-5,4)} D.{(5,-4)} 2.下列集合中表示同一集合的是( ). A.M={(3,2)},N={(2,3)} B.M={(x,y)|x+y=1},N={y|x+y=1} C.M={4,5},N={5,4} D.M={1,2},N={(1,2)} 3.定義集合運(yùn)算:.設(shè)A={1,2},B={0,2},則集合的所有元素之和為( ). A.0 B.2 C.3 D.6 4.集合A={x|x=2k,k∈Z},B={x|x=2k+1,k∈Z},C={x|x=4k+1,k∈Z}.若a∈A,b∈B,則一定有( ). A.a(chǎn)+b∈A B.a(chǎn)+b∈B C.a(chǎn)+b∈C D.a(chǎn)+b∈A,B,C中任一個(gè) 5.已知集合A={1,2,3},B={1,2},C={(x,y)|x∈A,y∈B},用列舉法表示集合C=________. 6.用符號(hào)“∈”或“”填空. (1) ________R, ________; (2)3________{x|x=n2+1,n∈N*}; (3)(1,1)________{y|y=x2}, (1,1)________{(x,y)|y=x2}. 7.下面三個(gè)集合: A={x|y=x2+1}; B={y|y=x2+1}; C={(x,y)|y=x2+1}. 問:(1)它們是不是相同的集合? (2)它們各自的含義是什么? 8.已知集合A={x|kx2-8x+16=0}只有一個(gè)元素,試求實(shí)數(shù)k的值,并用列舉法表示集合A. 百尺竿頭 更進(jìn)一步 設(shè)S是由滿足下列條件的實(shí)數(shù)所構(gòu)成的集合:①;②若a∈S,則.請(qǐng)解答下列問題: (1)若2∈S,則S中必有另外兩個(gè)數(shù),求出這兩個(gè)數(shù); (2)求證:若a∈S,則. (3)在集合S中元素能否只有一個(gè)?請(qǐng)說明理由. (4)求證:集合S中至少有三個(gè)不同的元素. 參考答案 1.答案:D 解析:. 2.答案:C 解析:集合{(3,2)}與{(2,3)}是兩個(gè)不同的集合,(3,2)與(2,3)是兩個(gè)不同的元素,A錯(cuò)誤;B中M是點(diǎn)集,N是數(shù)集,因此集合M與N不相同;同理,D中集合M是兩個(gè)數(shù),而集合N中是一個(gè)點(diǎn)(1,2),D錯(cuò)誤. 3.答案:D 解析:由于x∈A,y∈B,那么在計(jì)算xy時(shí),可以進(jìn)行如下分類: (1)x=1,y=0;(2)x=1,y=2;(3)x=2,y=0;(4)x=2,y=2. 依題意,,其所有元素之和為6. 4.答案:B 解析:考查對(duì)集合概念的理解,注意集合是研究元素特征的,即不能出現(xiàn)a+b=(2k)+(2k+1)=4k+1的錯(cuò)誤;應(yīng)為a+b=2k1+(2k2+1)=2(k1+k2)+1(k1、k2∈Z),由于k1+k2∈Z,得a+b∈B. 5.答案:{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)} 解析:∵C={(x,y)|x∈A,y∈B}, ∴滿足條件的點(diǎn)為 (1,1),(1,2),(2,1),(2,2),(3,1),(3,2). 6.答案:(1)∈ (2) (3) ∈ 解析:(1) ,而, ∴. (2)要判定3是否為集合中的元素,只需分析方程n2+1=3(n∈N+)是否有解. ∵n2+1=3, ∴, ∴. (3)(1,1)是一個(gè)有序?qū)崝?shù)對(duì),在坐標(biāo)平面上表示一個(gè)點(diǎn),而{y|y=x2}表示二次函數(shù)函數(shù)值構(gòu)成的集合, 故. 集合{(x,y)|y=x2}表示拋物線y=x2上的點(diǎn)構(gòu)成的集合(點(diǎn)集),且滿足y=x2,∴(1,1)∈{(x,y)|y=x2}. 7.解:(1)在A、B、C三個(gè)集合中,雖然代表元素滿足的表達(dá)式一致,但代表元素互不相同,所以它們是互不相同的集合. (2)集合A的代表元素是x,滿足y=x2+1, 故A={x|y=x2+1}=R. 集合B的代表元素是y,滿足y=x2+1的y≥1, 故B={y|y=x2+1}={y|y≥1}. 集合C的代表元素是(x,y),滿足條件y=x2+1,即表示滿足y=x2+1的實(shí)數(shù)對(duì)(x,y);也可認(rèn)為滿足條件y=x2+1的坐標(biāo)平面上的點(diǎn). 因此,C={(x,y)|y=x2+1}={點(diǎn)P∈平面α|P是拋物線y=x2+1上的點(diǎn)}. 8.解:當(dāng)k=0時(shí), 原方程變?yōu)椋?x+16=0, 所以x=2,此時(shí)集合A={2}; 當(dāng)k≠0時(shí),要使一元二次方程kx2-8x+16=0只有一個(gè)實(shí)根, 需,即k=1. 此時(shí)方程的解為x1=x2=4,集合A={4}. 百尺竿頭 更進(jìn)一步 (1)解:∵2∈S, ,∴. ∵-1∈S,,∴. ∵,,∴. ∴-1,,即集合S中另外兩個(gè)數(shù)為-1和. (2)證明:∵a∈S,∴. ∴(a≠0,因?yàn)槿鬭=0,則,不合題意). (3)解:集合S中的元素不能只有一個(gè). 理由:假設(shè)集合S中只有一個(gè)元素. 則根據(jù)題意知,即a2-a+1=0.此方程無實(shí)數(shù)解,∴.因此集合S中不能只有一個(gè)元素. (4)證明:由(2)知a∈S時(shí),, . 現(xiàn)證明a,,三個(gè)數(shù)互不相等. ①若,即a2-a+1=0,方程無解,∴; ②若,即a2-a+1=0,方程無解, ∴; ③若,即a2-a+1=0,方程無解, ∴. 綜上所述,集合S中至少有三個(gè)不同的元素.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019 2020 年高 數(shù)學(xué) 第一章 集合 函數(shù) 概念 1.1 表示 課后 訓(xùn)練 新人 必修
鏈接地址:http://m.jqnhouse.com/p-2578873.html