2019年高考數(shù)學(xué) 考試大綱解讀 專題11 概率與統(tǒng)計(jì)(含解析)理.doc
《2019年高考數(shù)學(xué) 考試大綱解讀 專題11 概率與統(tǒng)計(jì)(含解析)理.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019年高考數(shù)學(xué) 考試大綱解讀 專題11 概率與統(tǒng)計(jì)(含解析)理.doc(13頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
11 概率與統(tǒng)計(jì) 考綱原文 (六)統(tǒng)計(jì) 1.隨機(jī)抽樣 (1)理解隨機(jī)抽樣的必要性和重要性. (2)會(huì)用簡(jiǎn)單隨機(jī)抽樣方法從總體中抽取樣本;了解分層抽樣和系統(tǒng)抽樣方法. 2.用樣本估計(jì)總體 (1)了解分布的意義和作用,會(huì)列頻率分布表,會(huì)畫頻率分布直方圖、頻率折線圖、莖葉圖,理解它們各自的特點(diǎn). (2)理解樣本數(shù)據(jù)標(biāo)準(zhǔn)差的意義和作用,會(huì)計(jì)算數(shù)據(jù)標(biāo)準(zhǔn)差. (3)能從樣本數(shù)據(jù)中提取基本的數(shù)字特征(如平均數(shù)、標(biāo)準(zhǔn)差),并給出合理的解釋. (4)會(huì)用樣本的頻率分布估計(jì)總體分布,會(huì)用樣本的基本數(shù)字特征估計(jì)總體的基本數(shù)字特征,理解用樣本估計(jì)總體的思想. (5)會(huì)用隨機(jī)抽樣的基本方法和樣本估計(jì)總體的思想解決一些簡(jiǎn)單的實(shí)際問(wèn)題. 3.變量的相關(guān)性 (1)會(huì)作兩個(gè)有關(guān)聯(lián)變量的數(shù)據(jù)的散點(diǎn)圖,會(huì)利用散點(diǎn)圖認(rèn)識(shí)變量間的相關(guān)關(guān)系. (2)了解最小二乘法的思想,能根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程. (七)概率 1.事件與概率 (1)了解隨機(jī)事件發(fā)生的不確定性和頻率的穩(wěn)定性,了解概率的意義,了解頻率與概率的區(qū)別. (2)了解兩個(gè)互斥事件的概率加法公式. 2.古典概型 (1)理解古典概型及其概率計(jì)算公式. (2)會(huì)計(jì)算一些隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率. 3.隨機(jī)數(shù)與幾何概型 (1)了解隨機(jī)數(shù)的意義,能運(yùn)用模擬方法估計(jì)概率. (2)了解幾何概型的意義. (二十一)概率與統(tǒng)計(jì) 1.概率 (1)理解取有限個(gè)值的離散型隨機(jī)變量及其分布列的概念,了解分布列對(duì)于刻畫隨機(jī)現(xiàn)象的重要性. (2)理解超幾何分布及其導(dǎo)出過(guò)程,并能進(jìn)行簡(jiǎn)單的應(yīng)用. (3)了解條件概率和兩個(gè)事件相互獨(dú)立的概念,理解n次獨(dú)立重復(fù)試驗(yàn)的模型及二項(xiàng)分布,并能解決一些簡(jiǎn)單的實(shí)際問(wèn)題. (4)理解取有限個(gè)值的離散型隨機(jī)變量均值、方差的概念,能計(jì)算簡(jiǎn)單離散型隨機(jī)變量的均值、方差,并能解決一些實(shí)際問(wèn)題. (5)利用實(shí)際問(wèn)題的直方圖,了解正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義. 2.統(tǒng)計(jì)案例 了解下列一些常見的統(tǒng)計(jì)方法,并能應(yīng)用這些方法解決一些實(shí)際問(wèn)題. (1)獨(dú)立性檢驗(yàn) 了解獨(dú)立性檢驗(yàn)(只要求22列聯(lián)表)的基本思想、方法及其簡(jiǎn)單應(yīng)用. (2)回歸分析 了解回歸分析的基本思想、方法及其簡(jiǎn)單應(yīng)用. 概率與統(tǒng)計(jì)作為高考的必考內(nèi)容,在2019年的高考中預(yù)計(jì)仍會(huì)以“一小一大”的格局呈現(xiàn). 小題一般比較簡(jiǎn)單,出現(xiàn)在選擇題或填空題中比較靠前的位置,命題角度主要有兩個(gè)方面:一是統(tǒng)計(jì)數(shù)據(jù)的分析,多以統(tǒng)計(jì)圖表(折線圖或柱狀圖)的形式提供數(shù)據(jù),進(jìn)行數(shù)據(jù)的特征分析,如均值、方差、最值點(diǎn)及趨勢(shì)分析等;二是概率的求解,以古典概型的求解為主,涉及簡(jiǎn)單的排列組合知識(shí),幾何概型可能會(huì)與其他知識(shí)模塊內(nèi)容結(jié)合起來(lái)考查,如與函數(shù)、不等式、解析幾何或定積分的計(jì)算等相結(jié)合. 解答題一般出現(xiàn)在第18題或第19題的位置,屬于中檔題目,題目涉及兩個(gè)以上的知識(shí)模塊,具有一定的綜合性.命題角度主要有三個(gè)方面:一是統(tǒng)計(jì)圖表與分布列的綜合,涉及用頻率估計(jì)概率、互斥事件、對(duì)立事件以及相互獨(dú)立事件等的概率求解,以離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的求解為核心;二是統(tǒng)計(jì)數(shù)據(jù)的數(shù)字特征與回歸分析、獨(dú)立性檢驗(yàn)等的綜合,此類問(wèn)題計(jì)算量較大,注重?cái)?shù)據(jù)的分析與應(yīng)用;三是統(tǒng)計(jì)圖表與函數(shù)內(nèi)容的結(jié)合,包括函數(shù)解析式的求解與應(yīng)用等,這有可能重新成為命題的熱點(diǎn). 考向一 三種抽樣方法 樣題1 從某社區(qū)65戶高收入家庭,280戶中等收入家庭,105戶低收入家庭中選出100戶調(diào)查社會(huì)購(gòu)買力的某一項(xiàng)指標(biāo),應(yīng)采用的最佳抽樣方法是 A.系統(tǒng)抽樣 B.分層抽樣 C.簡(jiǎn)單隨機(jī)抽樣 D.各種方法均可 【答案】B 【解析】從某社區(qū)65戶高收入家庭,280戶中等收入家庭,105戶低收入家庭中選出100戶調(diào)查社會(huì)購(gòu)買力的某一項(xiàng)指標(biāo),因?yàn)樯鐣?huì)購(gòu)買力的某項(xiàng)指標(biāo),受到家庭收入的影響,而社區(qū)中各個(gè)家庭收入差別明顯,所以應(yīng)用分層抽樣法,故選B. 考向二 頻率分布直方圖的應(yīng)用 樣題2 (2017新課標(biāo)全國(guó)Ⅱ理科)海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100 個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg).其頻率分布直方圖如下: (1)設(shè)兩種養(yǎng)殖方法的箱產(chǎn)量相互獨(dú)立,記A表示事件:“舊養(yǎng)殖法的箱產(chǎn)量低于50kg,新養(yǎng)殖法的箱產(chǎn)量不低于50kg”,估計(jì)A的概率; (2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān); 箱產(chǎn)量<50kg 箱產(chǎn)量≥50kg 舊養(yǎng)殖法 新養(yǎng)殖法 (3)根據(jù)箱產(chǎn)量的頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計(jì)值(精確到0.01). 附:, (2)根據(jù)箱產(chǎn)量的頻率分布直方圖得列聯(lián)表: 箱產(chǎn)量 箱產(chǎn)量 舊養(yǎng)殖法 62 38 新養(yǎng)殖法 34 66 的觀測(cè)值, 由于,故有的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān). (3)因?yàn)樾吗B(yǎng)殖法的箱產(chǎn)量頻率分布直方圖中,箱產(chǎn)量低于的直方圖面積為 , 箱產(chǎn)量低于的直方圖面積為, 故新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計(jì)值為. 【名師點(diǎn)睛】利用頻率分布直方圖求眾數(shù)、中位數(shù)和平均數(shù)時(shí),應(yīng)注意三點(diǎn):①最高的小長(zhǎng)方形底邊中點(diǎn)的橫坐標(biāo)即眾數(shù);②中位數(shù)左邊和右邊的小長(zhǎng)方形的面積和是相等的;③平均數(shù)是頻率分布直方圖的“重心”,等于頻率分布直方圖中每個(gè)小長(zhǎng)方形的面積乘以小長(zhǎng)方形底邊中點(diǎn)的橫坐標(biāo)之和. 考向三 線性回歸方程及其應(yīng)用 樣題3 (2018新課標(biāo)全國(guó)Ⅱ理科)下圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖. 為了預(yù)測(cè)該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了與時(shí)間變量的兩個(gè)線性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型①:;根據(jù)2010年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型②:. (1)分別利用這兩個(gè)模型,求該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值; (2)你認(rèn)為用哪個(gè)模型得到的預(yù)測(cè)值更可靠?并說(shuō)明理由. 【答案】(1)見解析;(2)利用模型②得到的預(yù)測(cè)值更可靠.理由見解析. 【解析】(1)利用模型①,該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值為 (億元). 利用模型②,該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值為 (億元). (2)利用模型②得到的預(yù)測(cè)值更可靠. 理由如下: (?。恼劬€圖可以看出,2000年至2016年的數(shù)據(jù)對(duì)應(yīng)的點(diǎn)沒(méi)有隨機(jī)散布在直線上下.這說(shuō)明利用2000年至2016年的數(shù)據(jù)建立的線性模型①不能很好地描述環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢(shì).2010年相對(duì)2009年的環(huán)境基礎(chǔ)設(shè)施投資額有明顯增加,2010年至2016年的數(shù)據(jù)對(duì)應(yīng)的點(diǎn)位于一條直線的附近,這說(shuō)明從2010年開始環(huán)境基礎(chǔ)設(shè)施投資額的變化規(guī)律呈線性增長(zhǎng)趨勢(shì),利用2010年至2016年的數(shù)據(jù)建立的線性模型可以較好地描述2010年以后的環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢(shì),因此利用模型②得到的預(yù)測(cè)值更可靠. (ⅱ)從計(jì)算結(jié)果看,相對(duì)于2016年的環(huán)境基礎(chǔ)設(shè)施投資額220億元,由模型①得到的預(yù)測(cè)值226.1億元的增幅明顯偏低,而利用模型②得到的預(yù)測(cè)值的增幅比較合理.說(shuō)明利用模型②得到的預(yù)測(cè)值更可靠. 考向四 概率的求解 樣題4 (2018新課標(biāo)全國(guó)Ⅱ理科)我國(guó)數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個(gè)大于2的偶數(shù)可以表示為兩個(gè)素?cái)?shù)的和”,如.在不超過(guò)30的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其和等于30的概率是 A. B. C. D. 【答案】C 【名師點(diǎn)睛】古典概型中基本事件數(shù)的探求方法: (1)列舉法. (2)樹狀圖法:適合于較為復(fù)雜的問(wèn)題中的基本事件的探求.對(duì)于基本事件有“有序”與“無(wú)序”區(qū)別的題目,常采用樹狀圖法. (3)列表法:適用于多元素基本事件的求解問(wèn)題,通過(guò)列表把復(fù)雜的題目簡(jiǎn)單化、抽象的題目具體化. (4)排列組合法:適用于限制條件較多且元素?cái)?shù)目較多的題目. 樣題5 如圖,莖葉圖表示的是甲,乙兩人在5次綜合測(cè)評(píng)中的成績(jī),其中一個(gè)數(shù)字被污染,則甲的平均成績(jī)超過(guò)乙的平均成績(jī)的概率為 A. B. C. D. 【答案】C 考向五 離散型隨機(jī)變量及其分布列、均值與方差 樣題6 (2018新課標(biāo)全國(guó)Ⅰ理科)某工廠的某種產(chǎn)品成箱包裝,每箱200件,每一箱產(chǎn)品在交付用戶之前要對(duì)產(chǎn)品作檢驗(yàn),如檢驗(yàn)出不合格品,則更換為合格品.檢驗(yàn)時(shí),先從這箱產(chǎn)品中任取20件作檢驗(yàn),再根據(jù)檢驗(yàn)結(jié)果決定是否對(duì)余下的所有產(chǎn)品作檢驗(yàn),設(shè)每件產(chǎn)品為不合格品的概率都為,且各件產(chǎn)品是否為不合格品相互獨(dú)立. (1)記20件產(chǎn)品中恰有2件不合格品的概率為,求的最大值點(diǎn). (2)現(xiàn)對(duì)一箱產(chǎn)品檢驗(yàn)了20件,結(jié)果恰有2件不合格品,以(1)中確定的作為的值.已知每件產(chǎn)品的檢驗(yàn)費(fèi)用為2元,若有不合格品進(jìn)入用戶手中,則工廠要對(duì)每件不合格品支付25元的賠償費(fèi)用. (i)若不對(duì)該箱余下的產(chǎn)品作檢驗(yàn),這一箱產(chǎn)品的檢驗(yàn)費(fèi)用與賠償費(fèi)用的和記為,求; (ii)以檢驗(yàn)費(fèi)用與賠償費(fèi)用和的期望值為決策依據(jù),是否該對(duì)這箱余下的所有產(chǎn)品作檢驗(yàn)? 【答案】(1);(2)(i)490;(ii)應(yīng)該對(duì)余下的產(chǎn)品作檢驗(yàn). 【解析】(1)20件產(chǎn)品中恰有2件不合格品的概率為.因此 . 令,得. 當(dāng)時(shí),;當(dāng)時(shí),. 所以的最大值點(diǎn)為. (2)由(1)知,. (i)令表示余下的180件產(chǎn)品中的不合格品件數(shù),依題意知,,即. 所以. (ii)如果對(duì)余下的產(chǎn)品作檢驗(yàn),則這一箱產(chǎn)品所需要的檢驗(yàn)費(fèi)為400元. 由于,故應(yīng)該對(duì)余下的產(chǎn)品作檢驗(yàn). 考向六 正態(tài)分布 樣題7 已知隨機(jī)變量服從正態(tài)分布,若,則等于 A. B. C. D. 【答案】B 【解析】根據(jù)正態(tài)分布密度曲線的對(duì)稱性可知,,函數(shù)的對(duì)稱軸是, 所以,故選B. 樣題8 (2017新課標(biāo)全國(guó)Ⅰ理科)為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過(guò)程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測(cè)量其尺寸(單位:cm).根據(jù)長(zhǎng)期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布. (1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在之外的零件數(shù),求及的數(shù)學(xué)期望; (2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過(guò)程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查. (?。┰囌f(shuō)明上述監(jiān)控生產(chǎn)過(guò)程方法的合理性; (ⅱ)下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 經(jīng)計(jì)算得,,其中為抽取的第個(gè)零件的尺寸,. 用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,利用估計(jì)值判斷是否需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)和(精確到0.01). 附:若隨機(jī)變量服從正態(tài)分布,則, ,. (2)(i)如果生產(chǎn)狀態(tài)正常,一個(gè)零件尺寸在之外的概率只有0.0026,一天內(nèi)抽取的16個(gè)零件中,出現(xiàn)尺寸在之外的零件的概率只有0.0408,發(fā)生的概率很小. 因此一旦發(fā)生這種情況,就有理由認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過(guò)程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查,可見上述監(jiān)控生產(chǎn)過(guò)程的方法是合理的. (ii)由,得的估計(jì)值為,的估計(jì)值為, 由樣本數(shù)據(jù)可以看出有一個(gè)零件的尺寸在之外,因此需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查. 剔除之外的數(shù)據(jù)9.22, 剩下數(shù)據(jù)的平均數(shù)為, 因此的估計(jì)值為10.02. ,剔除之外的數(shù)據(jù)9.22,剩下數(shù)據(jù)的樣本方差為, 因此的估計(jì)值為. 【名師點(diǎn)睛】數(shù)學(xué)期望是離散型隨機(jī)變量中重要的數(shù)學(xué)概念,反映隨機(jī)變量取值的平均水平. 求解離散型隨機(jī)變量的分布列、數(shù)學(xué)期望時(shí),首先要分清事件的構(gòu)成與性質(zhì),確定離散型隨機(jī)變量的所有取值,然后根據(jù)概率類型選擇公式,計(jì)算每個(gè)變量取每個(gè)值的概率,列出對(duì)應(yīng)的分布列,最后求出數(shù)學(xué)期望. 正態(tài)分布是一種重要的分布,之前考過(guò)一次,尤其是正態(tài)分布的原則. 考向七 獨(dú)立性檢驗(yàn) 樣題9 (2018年高考新課標(biāo)Ⅲ卷理)某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人.第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了如下莖葉圖: (1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說(shuō)明理由; (2)求40名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時(shí)間超過(guò)和不超過(guò)的工人數(shù)填入下面的列聯(lián)表: 超過(guò) 不超過(guò) 第一種生產(chǎn)方式 第二種生產(chǎn)方式 (3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異? 附:, 【答案】(1)第二種生產(chǎn)方式的效率更高,理由見解析;(2)見解析;(3)能. (iii)由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需時(shí)間高于80分鐘;用第二種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需時(shí)間低于80分鐘,因此第二種生產(chǎn)方式的效率更高. (iv)由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時(shí)間分布在莖8上的最多,關(guān)于莖8大致呈對(duì)稱分布;用第二種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時(shí)間分布在莖7上的最多,關(guān)于莖7大致呈對(duì)稱分布,又用兩種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時(shí)間分布的區(qū)間相同,故可以認(rèn)為用第二種生產(chǎn)方式完成生產(chǎn)任務(wù)所需的時(shí)間比用第一種生產(chǎn)方式完成生產(chǎn)任務(wù)所需的時(shí)間更少,因此第二種生產(chǎn)方式的效率更高. 以上給出了4種理由,考生答出其中任意一種或其他合理理由均可得分. (2)由莖葉圖知. 列聯(lián)表如下: 超過(guò) 不超過(guò) 第一種生產(chǎn)方式 15 5 第二種生產(chǎn)方式 5 15 (3)由于, 所以有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019年高考數(shù)學(xué) 考試大綱解讀 專題11 概率與統(tǒng)計(jì)含解析理 2019 年高 數(shù)學(xué) 考試 大綱 解讀 專題 11 概率 統(tǒng)計(jì) 解析
鏈接地址:http://m.jqnhouse.com/p-6179305.html