0442-槽形托輥帶式輸送機設計【全套6張CAD圖】
0442-槽形托輥帶式輸送機設計【全套6張CAD圖】,全套6張CAD圖,槽形托輥帶式,輸送,設計,全套,cad
一、選題的依據(jù)及意義:
帶式輸送機是一種摩擦驅動以連續(xù)方式運輸物料的機械。應用它可以將物料在一定的輸送線上,從最初的供料點到最終的卸料點間形成一種物料的輸送流程。它既可以進行碎散物料的輸送,也可以進行成件物品的輸送。除進行純粹的物料輸送外,還可以與各工業(yè)企業(yè)生產流程中的工藝過程的要求相配合,形成有節(jié)奏的流水作業(yè)運輸線。所以帶式輸送機廣泛應用于現(xiàn)代化的各種工業(yè)企業(yè)中。在礦山的井下巷道、礦井地面運輸系統(tǒng)、露天采礦場及選礦廠中,廣泛應用帶式輸送機。它用于水平運輸或傾斜運輸。
帶式輸送機是煤礦最理想的高效連續(xù)運輸設備,與其他運輸設備(如機車類)相比,具有輸送距離長、運量大、連續(xù)輸送等優(yōu)點,而且運行可靠,易于實現(xiàn)自動化和集中化控制,尤其對高產高效礦井,帶式輸送機已成為煤炭開采機電一體化技術與裝備的關鍵設備。
帶式輸送機一般有兩種基本形式-平形帶和槽形帶,兩種形式的區(qū)別主要是上托輥形式不同,此次我選的是槽形托輥式輸送機。
通過槽形托輥帶式輸送機的設計不僅是對我們大學四年來所學的東西綜合運用,零部件設計、強度分析、標準件的選用、solidworks軟件的使用、編寫技術文件、查閱文獻等方面的訓練,更是考察了我們的設計和動手能力,令我們對所學的知識有更深一層的理解。相信這次畢設會令我受益匪淺。
二、國內外研究概況及展趨勢(含文獻綜述):
帶式輸送機是一種適應能力較強,應用廣泛的輸送機械,多用于塊狀和粒狀的物料,也可用來輸送單件物品。由于帶式輸送機能夠經濟而有效地輸送物料,故不僅在小輸送量和短距離內可以采用,而且在大輸送量和長輸送距離內也同樣采用。
在工業(yè)生產中,帶式輸送機可用作生產機械設備之間構成連續(xù)生產的紐帶,以實現(xiàn)生產環(huán)節(jié)的連續(xù)性和自動化,提高勞動生產率和減輕勞動強度。
帶式輸送機一般有兩種基本形式-平形帶和槽形帶,兩種形式的區(qū)別主要是上托輥形式不同,帶式輸送機的基本位置形式有五種∶(1)水平輸送機(2)傾斜輸送機(3)先水平后傾斜輸送機(4)先傾斜后水平輸送機(5)水平-傾斜-水平輸送機,其它布置形式是以上五種形式的混合。
帶式輸送機的發(fā)展趨勢為:⑴設備大型化。其主要技術參數(shù)與裝備均向著大型化發(fā)展,以滿足年產300~500萬t以上高產高效集約化生產的需要。 ⑵應用動態(tài)分析技術和機電一體化、計算機監(jiān)控等高新技術,采用大功率軟起動與自動張緊技術,對輸送機進行動態(tài)監(jiān)測與監(jiān)控,大大地降低了輸送帶的動張力,設備運行性能好,運輸效率高。 ⑶采用多機驅動與中間驅動及其功率平衡、輸送機變向運行等技術,使輸送機單機運行長度在理論上已有受限制,并確保了輸送系統(tǒng)設備的通用性、互換性及其單元驅動的可靠性。 ⑷新型、高可靠性關鍵元部件技術。如包含CST等在內的各種先進的大功率驅動裝置與調速裝置、高壽命高速托輥、自清式滾筒裝置、高效貯帶裝置、快速自移機尾等。如英國FSW生產的FSW1200/(2~3)×400(600)工作面順槽帶式輸送機就采用了液粘差速或變頻調速裝置,運輸能力達3000 t/h以上,它的機尾與新型轉載機(如美國久益公司生產的S500E)配套,可隨工作面推移而自動快速自移、人工作業(yè)少、生產效率高。
三、研究內容及實驗方案:
1、槽形托輥帶式輸送機的原始資料(數(shù)據(jù))及設計技術要求
a)輸送長度為30 米,提升高度2.5米;
b)輸送量500 t/h, 輸送物料為原煤;
c)輸送物料為比重900公斤/米3,物料在帶面上的動堆積角為300;
d)輸送帶速: 2米/秒 ;
2、研究內容
運動及動力參數(shù)計算,主要零部件的強度計算,主要零件、部件及總裝配圖繪制,設計說明書的編寫。
四、目標、主要特色及工作進度
1、目標:
通過這次畢業(yè)設計,可以系統(tǒng)地把大學里的專業(yè)知識復習應用到實際設計和生產
去,提高自己的動手能力和創(chuàng)新能力,鍛煉自己的自主能力和查閱資料的能力,以此提
高的綜合素質來適應社會發(fā)展的需求。
2、主要特色:
借助計算機將平形托輥帶式輸送機在工作狀態(tài)時的整個階段的工作情況展示出來,有助于我們更好地對設計產品進行改進。
3、工作進度:
工作進度:
1). 查閱相關資料,外文資料翻譯(6000字符以上),撰寫開題報告。 第1周—第2周
2).運動及動力參數(shù)計算 第3周—第4周
3).總裝圖設計 第5周—第8周
4). 主要零、部件強度及選用計算 第9周—第11周
5).用solidworks對主要零件進行有限元分析 —第12周
6). 繪制零、部件圖 第13周—第16周
7).整理畢業(yè)論文答辯準備 —第17周
五、參考文獻
【1】孫桓等主編.機械原理. 北京:高等教育出版社,2001
【2】濮良貴等主編.機械設計. 北京:高等教育出版社,2001
【3】毛廣卿主編.糧食輸送機械與應用. 北京:科學出版社,2003
【4】徐灝主編.機械設計手冊(第四版).北京.機械工業(yè)出版社.1991
【5】范祖堯主編.現(xiàn)代機械設備設計手冊. 北京:機械工業(yè)出版社,1996
【6】《運輸機械設計選用手冊》編委會.運輸機械設計選用手冊. 北京:
化學工業(yè)出版社.1999
【7】Shigley J E,Uicher J J.Theory of machines and mechanisms.New
York:McGraw-Hill Book Company,1980
槽形托輥帶式輸送機設計
摘要:本文所設計的是槽形托輥帶式輸送機,其設計要求為:輸送物料為原煤,輸送量:500 噸/小時,輸送長度:30 米,提升高度2.5米;堆積密度:900公斤/米3;物料在帶面上的動堆積角為300,輸送帶速:2米/秒,上托輥槽形布置。設計中,其整體是一個傾斜的狀態(tài),上托輥都采用槽形布置;下(回程)托輥采用平行托輥。本輸送機為向上運輸物料,其傾斜角為3.80<150,所以采用小傾角設計。在設計帶寬時,按照槽形布置來選擇計算。在尾架的選取方面,采用螺旋拉緊裝置尾架,使輸送帶能始終保持必要的張力。用Solidworks對連接軸進行有限元分析,得出其一般工作時的性能狀態(tài),并做出相應的調整。
目前,帶式輸送機正朝著長距離,高速度,低摩擦的方向發(fā)展,近年來出現(xiàn)的氣墊式帶式輸送機就是其中的一個。在帶式輸送機的設計、制造以及應用方面,目前我國與國外先進水平相比仍有較大差距,國內在設計制造帶式輸送機過程中存在著很多不足。
關鍵詞: 槽形托輥 帶式輸送機 輸送帶 有限元分析
The Design of Slotted Roller Belt Conveyor
Abstract: What is designed in this paper is slotted roller belt conveyor, the design requirements are: transport of materials: coal, transport capacity: 500 tons / hour, transmission length: 30 meters, 2.5 meters high upgrade; Bulk Density: 900 kg / m 3; materials in the dynamic accumulation of the surface with angle is 30, conveyor speed: 2 m / s, on the trough roller arrangement. Design of a tilt the overall state of the idler trough arrangement used; under the (return) the use of parallel idler rollers. When the materials are transport up through the conveyor, the tilt angle is 3.80 <150, so take the use of small-angle design. As the selection of the tailstock, we take the use of Tailstock screw tensioning device so that the conveyor system can always maintain the necessary tension. And Solidworks is used to do the finite element analysis on the connecting axis, to meet the required strength.
Today, long distance, high speed, low friction is the direction of belt conveyor’s development. Air cushion belt conveyor is one of them. At present, we still fall far short of abroad advanced technology in design, manufacture and using. There are a lot of wastes in the design of belt conveyor.
Keywords: slotted roller belt conveyor
conveyor idlers Finite Element Analysis
Signature of Supervisor:
偽形的機械結構優(yōu)化構形理論
Jean Luc Marcelin
2007年1月10日收到 /接受:2007 年5月1日/在線發(fā)表:2007年5月25日。
2007年斯普林格出 版社倫敦有限公司
摘要 這項工作提供了偽構形理論的一些應用程序,機械結構的形狀優(yōu)化技術。在本文構形理論的發(fā)展中, 優(yōu)化的主要目標是最終總勢能的最小化 。其他目標優(yōu)化使用的機械結構優(yōu)化通常被用來限制或優(yōu)化約束。在這里介紹二種應用:第一個是使用遺傳算法與偽構形技術對一水滴形狀優(yōu)化和第二個是對一個液壓錘后軸承的形狀優(yōu)化處理。
關鍵詞 形狀優(yōu)化 結構 遺傳算法
1引言
本文介紹一種偽構形方法來達到物體形狀優(yōu)化基于總勢能的最小化。我們將介紹減少結構總勢能尋找最優(yōu)形狀,這可能在某些情況下是個好主意。該參考的構形理論可以以某種方式合理的理由解釋如下。
據(jù)Bejan [1],在工程設計和自然性能中,形狀和結構一直在演變?yōu)楦玫男阅?;在工程設計中用到的目標和制約因素是從該幾何相同的機制在自然流動系統(tǒng)中出現(xiàn)。Bejan [1]開始設計和工程系統(tǒng)優(yōu)化,并從自然系統(tǒng)中發(fā)現(xiàn)了幾何形式的確定原則。這種發(fā)現(xiàn)是新的構形理論的根據(jù)。優(yōu)化配置注定是不完善的。該系統(tǒng)的不完善到處蔓延時,效果最差,使越來越多的內部點和硬件工作部件被壓??此破毡榈膸缀涡问綀F結工程與自然的流動系統(tǒng)。Bejan [1]采用了一種新的理論,他毫不掩飾地說明,與熱力學第二定律是相同的理論,因為一個簡單的理論意圖 預測地球上任何活著的幾何形式。
許多構形理論的應用程序在機械流體中開發(fā),特別是在優(yōu)化流動[2-10]中。另一方面,據(jù)我們所知,在固體或結構力學中有一些應用實例。因此,我們至少有一半的參考文獻 在流體動力學論文引用(同作者),因為構形方法是先由同一作者發(fā)展,只有阿德里安Bejan在論文中提到流體動力學。構形理論基于所有自然的創(chuàng)作,整體最佳的理論相比,該控制的演變與自然系統(tǒng)適應。構形分配原則由不完善的地方以及盡可能把最小的規(guī)模擴到最大組成??偟暮暧^構形理論工程結構從基本結構組裝開始,通過與自然的規(guī)則相一致最佳分布不完善。我們的目標是研究降低成本。
但是,從這里長期偽構形來看,機械結構優(yōu)化的全局宏觀解決方案已經成本降低,目標非常接近構形理論。那個構形理論是預測的理論,只有一 單一的原則,從優(yōu)化所有上升。這篇文章的題目同樣適用于偽構形的步驟。偽構形理論單一的優(yōu)化原則是最小化總勢能。此外,在我們以下提出的例子中偽構形原則和遺傳算法有相關性,其結果是我們的優(yōu)化將非常接近自然理論。
本文的目是展示偽構形步驟用來適用力學結構,特別是對形狀優(yōu)化機械結構。其基本思想是非常簡單:處于平衡狀態(tài)的機械結構對應最小總勢能。以同樣的方式,最佳的機械結構也必須符合最低限度總勢能。這目標必須首先對其他的東西進行干預。正是這種構想,在這篇文章中發(fā)展。
兩個例子將會在后面提到。 最小化總勢能以優(yōu)化一機械結構不是全新的的想法。已經有很多文件解決了這一問題,使這一方法系統(tǒng)化。最優(yōu)化的唯一目標是使能量最小化。
高斯林[11]用一個簡單的方法提出了硬件案件形式的有線網絡團體和膜發(fā)現(xiàn)結構。該方法是根據(jù)基本的能源概念。剪應力變表達式是用來定義總勢能。最后的能源形式是盡量減少使用鮑威爾算法。在菅野和大崎[12]中,最低的互補能源原則是建立網絡作為變量應力組件幾何非線性彈性。為了顯示總勢能和能量互補之間的強對偶問題,這些問題的凸配方被進行調查,可嵌入到原始的二階規(guī)劃問題中。 Taroco [13]進行分析形成一個彈性固體的敏感性平衡問題。第一階形中,域、邊界積分和總勢能的第二階形表達衍生物已經建立。在華納[14]中,最優(yōu)設計問題是根據(jù)其自身的重量解決了一個彈性懸掛桿。他已經發(fā)現(xiàn)截面在一個均衡狀態(tài)中總勢能的面積最小化分布。在相類似的設計問題中,在相同的約束條件潛在最大的能量也已解決了。在文圖拉[15]中,邊界條件控制的問題已經用網格方法解決。在文圖拉[15]中,在總勢能功能的彈性固體問題中介紹移動最小化近似值了,廣義的拉格朗日術語被添加到滿足本質邊界的條件中。
總的潛在能量最小化原理除了在一般有限元基礎上制定,還找到一個未知的最佳目標結點因素[16]。
2所使用的方法
在本文的偽構形理論中,最優(yōu)化的主要目標是盡量減少總勢能。在優(yōu)化機械結構里其他的物體通用被限制或優(yōu)化約束。例如,一個東西可能在重量上有限制,或不超過其應力值。
在本文中這種想法是很簡單的。機械結構通過兩種參數(shù)類型來描述:已知的離散變量(例如,用有限元方法的自由度的位移)以及幾何變量設計(例如參數(shù),使人們有可能描述機械結構形狀)??倽摿δ茉谕粫r間里通過一個確定隱含或明確的方式離散設計變量。因此,進行雙重優(yōu)化機械結構相比離散化設計變量,其目的是減少整體的總勢能。顯然,機械結構的優(yōu)化問題用下列方法處理:
- 目標:減少總勢能
- 變量的優(yōu)化:同時確定離散變量(在結構力學的有限元法的傳統(tǒng)用例),描述設計變量的形狀結構
- 優(yōu)化限制:
- 重量或體積
- 位移或限制
- 壓力
- 頻率
機械結構的優(yōu)化問題將用以下方法解決,如果需要的話需要在這些階段中重申(按照問題的本質):
第1階段 最小化機械結構總勢能和唯一的離散結構變量相比較(度的有 限元)。它的作用在這里作為一個優(yōu)化不優(yōu)化的限制。在此階段唯一的限制是 純粹的機械原點,并涉及邊界條件,適用于結構外部的作用。
在第一階段,設計變量保持不變,根據(jù)設計變量1獲得的隱含或明確表述的自由度(可以是變量,使人們有可能描述形狀,以外形的優(yōu)化為例子)。大家可以看到在下面部分的例子中,這些表現(xiàn)形式可以是有形或無形的,且這是適當?shù)闹委熀蟮那闆r。在案件1中用有限元計算方法,這一階段1是在有限元計算的基礎上,以獲取機械結構的自由度。事實上,有限元,位移與節(jié)點、機械結構網格,獲得了最小化總勢能[16]。
第2階段中 機械結構自由度的表達根據(jù)設計前先獲得的變量,然后注入機械結構總勢能(你會看到下面的部分中第二個例子它是如何影響自由度在隱含的職能設計變量的情況下)。然后得到一個表達式總的潛在能量,它依賴于(以明示或默示的形式)設計變量。
第3階段 隨后進行的第二次和新的最小化總勢能通過前面的形式取得,但這次比設計變量同時遵循技術限制或優(yōu)化約束的問題。這種方法按問題的本質可以使用或多或少的設備。這點很明顯,例如,如果離散變量按照設計變量可以表示為一明確的方式,在2到3個階段是可以立即設置的,并無迭代。
如果離散變量不能按照設計變量明確的方式表達,或者如果結構拓撲不是固定的,或者如果行為不是線性的,這將有必要通過分階段進行1至3連續(xù)迭代。這將在下面部分的例子中提到,一會我們會看到戰(zhàn)略的場合,可以采用一種類型為這些迭代??偨Y,偽構形的步驟,主要目的只是盡量減少潛在總能源,其他可能的目標是限制或優(yōu)化約束。
在我們的例子中使用的最優(yōu)化方法是遺傳算法(遺傳算法),如[17]。,我們也可以找到很多書籍有典型類似的教學價值,例如在[18]中。這種方法是非常先進方便于我們的偽構形方法。撰文已在天然氣方面廣泛地開展了工作,關于這一主題出版的期刊被譽為期刊[19-31]。由于天然氣問題在社會結構力學上還比較新,在這里我們提供的一些細節(jié)正是使用這里的算法——多點交叉使用,而不是一單點交叉。在甄選計劃上,每年的使用完全是隨機生成。在我們的例子中,幾代人是等同的銜接使用。我們提供例子的結果是不斷地通過使用不同的遺傳算法。一個比較標準的遺傳算法已經被證明是我們足夠的榜樣。
3范例
盡管潛在的能源可能是一個好的舉措對于一些優(yōu)化問題,勢能不是賦予形成水滴的能量,也沒有定義錘子的最佳形狀,這就是為什么勢能不是唯一的、客觀的,但最優(yōu)化問題是多目標的和用公式明確表示的兩個例子的目標函數(shù)。
3.1例1:對一滴水形狀優(yōu)化
第一個測試例子是對下降的水滴形狀優(yōu)化(圖1)。這個問題是等同于抵抗坦克的膜理論計算。其目的是看看偽構形理論給出了大自然的優(yōu)化設計。
3.1.1使用的方法
該一水滴幾何的定義是:產生的軸對稱殼薄線。此行描述于連續(xù)直線或圓形段描述在特定意義和輸入數(shù)據(jù)定義點上的坐標和半徑值。初始數(shù)據(jù)是一個由直線段連接結點的集合。
每一個結點是確定它兩個圓柱坐標上(R,z),和真正的R代表的半徑圓相切的兩個交叉直線段的這一點。另一臺計算機的計算給出任何邊界的坐標點,特別是切點必須界定圓弧長度。
水式設計描述了三個弧圓如圖1所示。
通過有限元方法采用三節(jié)點拋物原理運用基爾霍夫殼體理論分析。自動網格生成器建立每個直線或圓形段的有限元網格 ,它們被視為宏觀有限元。
我們的目標是獲得一個水滴形狀形成最低總勢能(這是主要目標)和平等的抵抗坦克(這是唯一約束或限制的問題)。
事實上,為了水滴的問題,目標是多對象的,兩個目標(F1=最低總額的F1
勢能和f2 =等于電阻)的合并多目標:F1=F1 + F2。
馬塞蘭指出,在總勢能的減少中約束或限制的問題被考慮進去,在[19]中。
3.1.2結果
在水滴外形設計中描述了三個弧圓(圖1),他們的中心和半徑是設計變量。因此,有9個設計變量,其中:r1,Z1,R1為 圓1;r2, Z2,R2為圓2; r3,Z3,R3為圓3 。在遺傳算法中,其中每個設計變量通過3個二進制數(shù)字編碼.
所有這些二進制數(shù)字編碼是端到端地形成27個二進制數(shù)字的染色體長度。
GA是運行了30個,一個數(shù)字對50代,一個穿越的概率為0.8,而突變概率為0.1。
對應的染色體最優(yōu)解是
100 100 011 011 010 011 100 011 101
這給出了圖1的解決方案。其中:
- r1 = 18,z1 = 17,R1 =- 0.065
- R2= 13.75,z2= 12.2,R2 =- 7.7
- r3 = 4.1,Z3= 21.4,R3 =- 21
這是關于一水滴的外形非常接近自然的最佳解決方案。通過三個圓的弧模式的水滴模型并非十全十美。但是,構形理論用于優(yōu)化不完善的地方,并發(fā)現(xiàn)最接近自然的解決辦法。因此,構形原則包括盡可能的分配不完善的地方。
3.2例2:軸對稱結構的形狀優(yōu)化
在這一部分,呈現(xiàn)了液壓錘后軸承傳統(tǒng)的最優(yōu)化影響。相對于較少的周期操作軸承問題(圖2)漸漸體現(xiàn)出來。
對于軸對稱結構,分析是通過有限元方法進行的,遺傳算法優(yōu)化的過程中的特殊字符一直用來緩解計算和節(jié)省計算機的時間。首先,由于只是一個結構幾個部分必須經常修改,子結構的概念是用來單獨“固定”和“移動”的部分。固定部分計算兩次:第一次是開始,第二次是結尾的優(yōu)化過程。只有這些縮減剛度矩陣的子結構被添加到移動部分的矩陣。
與此相關的部分,自動發(fā)電機創(chuàng)建作為每個子結構的網格宏觀有限元。這些宏量元素不是
三角(六節(jié)點)或四邊形(8個節(jié)點)。根據(jù)那些著名的技術,同樣的細分用于父的空間,以獲取網本身,這顯然是出于作出相同類型的元素。在這個網優(yōu)化控制過程,一個的離散如有必要可以重新選擇。
總之,優(yōu)化問題如下:
總的目標函數(shù) 最小化潛在能源。需要注意的另一重要
目標(馮米塞斯沿等高線的移動相當于最小應力的最大值)是這里作為問題的約束。這第二個目標是要實現(xiàn)液壓錘的后軸承最小化。
設計變量 設計變量是半徑為r,寬X附近的半徑(圖2)。
制約因素 制約因素是建立在這樣的在幾何方式上,只允許有微小的變化是。它們考慮到技術的限制。他們包括編碼設計變量。另外,重要的制約因素是,米塞斯沿等高線的移動的最大值不能超過一定的值。約束被考慮到總勢能的降落中,在[19]說明。
所有這些二進制數(shù)字終端到終端地形成八個二進制數(shù)字的染色體長度。
GA運行的12個,數(shù)的30代,交叉概率 為0.5,以及變異概率為0.06。
最優(yōu)解對應的染色體
1101 1000
圖2給出了解決方案。其中:
?= 1.95,X = 6.0
在這種產品的形狀自動優(yōu)化中,只需簡單地把形狀修改小,這比計算更難預測(半徑增加外,減少寬度),大大提高了機械軸承的耐久性:過壓力正在減少50%。
4討論
本文件中的兩個例子可以證明偽構形理論。第一個是對軸對稱膜下降形外殼形狀優(yōu)化(水滴)。這種結構是用純的張力。果不其然,盡量減少這種結構的總勢能,所有可能的變量導致的形狀是完全和調和十分相似的。但是,第二個例子事實證明,制定最低的能源不僅可以
工作在最簡單的情況下,純粹的張力結構還能彎曲,剪切或更為復雜的結構扭轉應力。這個條件是為了增加這一問題次要目標(通常用于形狀優(yōu)化)的限制或優(yōu)化約束。
然而,在偽形構形理論聲明中,最大限度地減少所有可能的變量的機械結構中的總勢能,
這不完全能達到的。自然和機械也不是都如此簡單,多年研究的大自然設計結構表明,即使在最簡單的實例中,多重標準,以復雜的方式工作。因此,有必要添加其他標準或優(yōu)化問題的制約是顯而易見的。最小化總勢能只是一個總的原則在優(yōu)化的過程啟動。
5結論
一個有趣的方法引入了形狀優(yōu)化的機械結構。在這個文件闡述的偽構行理論中,優(yōu)化的主要目標是最小化總勢能。其他的目標通常使用的形狀 優(yōu)化這里使用了限制或優(yōu)化限制。它給我們的例子很好的效果。
參考文獻
1、從工程到自然形狀和結構 劍橋大學出版社,劍橋大學,Bejan A主編
2、偽構形理論的網絡的路徑冷卻機 [J].熱能質量40:799-816[J]. Bejan A主編
3、自然如何形成 52英格119(10):90-92 Bejan A主編
4、樹狀構形網絡空間分布的電力 能源轉化管理 44:867-891
Arion V,Cojocari,Bejan一個(2003)Constructa Bejan A主編
5、對流體幾何內部的優(yōu)化 熱能轉化120:357-364[J]. Nelson RA, Bejan A主編
6、碟狀區(qū)域構形設計的冷卻傳導 [J].熱能質量45:1643-1652 Rocha LAO, Lorente S, Bejan A主編
7、天然裂縫模式的構形理論形成快速冷卻 [J].熱能質量 反式41:1945-1954 Bejan A, Ikegami Y, Ledezma GA主編
畢業(yè)設計(論文)任務書
I、畢業(yè)設計(論文)題目:
30米槽形托輥帶式輸送機設計
II、畢 業(yè)設計(論文)使用的原始資料(數(shù)據(jù))及設計技術要求:
帶式輸送機是一種摩擦驅動以連續(xù)方式運輸物料的機械。應用它,可以將物料在一定的輸送線上,從最初的供料點到最終的卸料點間形成一種物料的輸送流程。本輸送機用于碎散物料的上行輸送。
1. 輸送長度:30米,提升高度2.5米;
2. 輸送量:500 噸/小時, 輸送物料為原煤;
3. 堆積密度:900公斤/米3;物料在帶面上的動堆積角為300;
4、輸送帶速:2米/秒
III、畢 業(yè)設計(論文)工作內容及完成時間:
1. 查閱相關資料,外文資料翻譯(6000字符以上),撰寫開題報告。
第1周—第2周
2.運動及動力參數(shù)計算 第3周—第4周
3.總裝圖設計 第5周—第8周
4. 主要零、部件強度及選用計算 第9周—第11周
5.用solidworks對主要零件進行有限元分析 —第12周
6.繪制零、部件圖 第13周—第16周
7. 整理畢業(yè)論文及答辯準備 —第17周
Ⅳ 、主 要參考資料:
【1】孫桓等主編.機械原理.北京:高等教育出版社,2001
【2】濮良貴等主編.機械設計. 北京:高等教育出版社,2001
【3】《運輸機械設計選用手冊》編委會.運輸機械設計選用手冊. 北京:
,
化學工業(yè)出版社.1999
【4】毛廣卿主編.糧食輸送機械與應用. 北京: 科學出版社,2003
【5】范祖堯主編.現(xiàn)代機械設備設計手冊. 北京:機械工業(yè)出版社,1996
【6】徐灝主編.機械設計手冊(第四版).北京.機械工業(yè)出版社.1991
【7】Shigley J E,Uicher J J.Theory of machines and mechanisms.New
York:McGraw-Hill Book Company,1980
槽形托輥帶式輸送機設計
摘要:本文所設計的是槽形托輥帶式輸送機,其設計要求為:輸送物料為原煤,輸送量:500噸/小時,輸送長度:30 米,提升高度2.5米;堆積密度:900公斤/米3;物料在帶面上的動堆積角為300,輸送帶速: 2米/秒,上托輥槽形布置。設計中,其整體是一個傾斜的狀態(tài),上托輥都采用槽形布置;下(回程)托輥采用平行托輥。本輸送機為向上運輸物料,其傾斜角為3.80<150,所以采用小傾角設計。在設計帶寬時,按照槽形布置來選擇計算。在尾架的選取方面,采用螺旋拉緊裝置尾架,使輸送帶能始終保持必要的張力。用Solidworks對連接軸進行有限元分析,得出其一般工作時的性能狀態(tài),并做出相應的調整。
目前,帶式輸送機正朝著長距離,高速度,低摩擦的方向發(fā)展,近年來出現(xiàn)的氣墊式帶式輸送機就是其中的一個。在帶式輸送機的設計、制造以及應用方面,目前我國與國外先進水平相比仍有較大差距,國內在設計制造帶式輸送機過程中存在著很多不足。
關鍵詞: 槽形托輥 帶式輸送機 輸送帶 有限元分析
The Design of Slotted Roller Belt Conveyor
Abstract: What is designed in this paper is slotted roller belt conveyor, the design requirements are: transport of materials: coal, transport capacity: 450 tons / hour, transmission length: 25 meters, 2 meters high upgrade; Bulk Density: 900 kg / m 3; materials in the dynamic accumulation of the surface with angle is 40, conveyor speed: 1.2 m / s, on the trough roller arrangement. Design of a tilt the overall state of the idler trough arrangement used; under the (return) the use of parallel idler rollers. When the materials are transport up through the conveyor, the tilt angle is 3.80 <150, so take the use of small-angle design. As the selection of the tailstock, we take the use of Tailstock screw tensioning device so that the conveyor system can always maintain the necessary tension. And Solidworks is used to do the finite element analysis on the connecting axis, to meet the required strength.
Today, long distance, high speed, low friction is the direction of belt conveyor’s development. Air cushion belt conveyor is one of them. At present, we still fall far short of abroad advanced technology in design, manufacture and using. There are a lot of wastes in the design of belt conveyor.
Keywords: slotted roller belt conveyor
conveyor idlers Finite Element Analysis
目 錄
前言 …………………………………………………………………………………...(6)
1 帶式輸送機的概述…………………………………………………………(7)
1.1 帶式輸送機的應用………………………………………………………….(7)
1.2 帶式輸送機的工作原理 …………………………………………………..(8)
1.3 帶式輸送機的種類………………………………………………………….(8)
1.3.1 按承載能力分類……………………………………………………………..(9)
1.3.2 按可否移動分類……………………………………………………………..(9)
1.3.3 按輸送帶的結構形式分類…………………………………………………(9)
1.4 帶式輸送機的結構和布置形式……………………………………………(9)
1.5 帶式輸送機的性能……………………………………………....................(10)
1.6 帶式輸送機的發(fā)展狀況…………………………………………………...(11)
2 帶式輸送機部件的選用………………………………………………...(12)
2.1 輸送帶………………………………………………………………………...(12)
2.1.1 輸送帶的分類………………………………………………………………..(12)
2.1.2 輸送帶的性能要求…………………………………………………………(14)
2.1.3 輸送帶的選用……………………………………………………………….(15)
2.2 驅動裝置……………………………………………………………………..(18)
2.3 傳動滾筒和改向滾筒………………………………………………………(18)
2.3.1 傳動滾筒的作用及類型……………………………………………………(18)
2.3.2 傳動滾筒的選型及設計……………………………………………………(19)
2.3.3 傳動滾筒結構………………………………………………………………..(20)
2.3.4 改向滾筒………………………………………………………………………(20)
2.4 托輥……………………………………………………………………………(21)
2.5 機架和中間架………………………………………………………………..(24)
2.6 拉緊裝置……………………………………………………………………...(25)
2.6.1 拉緊裝置的作用…………………………………………………………….(25)
2.6.2 張緊裝置在使用中應滿足的要求……………………………………….(25)
2.6.2 拉緊裝置的結構形式……………………………………………………..(26)
2.7 制動裝置…………………………………………………………………….(28)
2.7.1 逆止器……………………………………………………………………….(28)
2.7.2 制動器……………………………………………………………………….(29)
2.8 清掃器……………………………………………………………………….(30)
2.8.1 頭部清掃器…………………………………………………………………(30)
2.8.2 空段清掃器…………………………………………………………………(31)
2.9 卸料裝置及導料槽……………………………………………………......(31)
2.9.1 卸料裝置…………………………………………………………………….(31)
2.9.2 導料槽………………………………………………………………………..(33)
3 槽形托輥帶式輸送機的計算…………………………………………(33)
3.1 原始數(shù)據(jù)及工作條件…………………………………………… ..(33)
3.2 輸送帶選擇計算………………………………………………...…(34)
3.2.1 選定帶寬……………………………………………………………(34)
3.2.2 輸送帶上物料流橫截面面積S的計算………………………...…(35)
3.3 圓周驅動力的計算……………………………………………...…(36)
3.3.1 圓周驅動力Fu…………………………………………………..…(36)
3.3.2 主要阻力F……………………………………………………….(36)
3.3.3 附加阻力FN……………………………………………………..…(37)
3.3.4 主要特征阻力………………………………………………………….(37)
3.3.5 附加特種阻力Fs…………………………………………………………(38)
3.3.6 傾斜阻力Fst………………………………………………………………...(39)
3.4 輸送帶張力………………………………………………………………….(39)
3.4.1 輸送帶不打滑條件………………………………………………………...(39)
3.4.2 輸送帶下垂度校核………………………………………………………..(39)
3.4.3 各特性點張力………………………………………………………………(40)
3.5 傳動滾筒軸功率…………………………………………………………..(40)
3.6 電動機功率和驅動裝置組合…………………………………………….(41)
3.7 輸送帶選擇計算……………………………………………………………(41)
3.7.1 織物芯輸送帶層數(shù)…………………………………………………………(42)
3.7.2 輸送帶厚度…………………………………………………………………..(42)
3.8 輸送帶總長度、總平方數(shù)和總質量…………………………………….(42)
3.8.1 輸送帶幾何長度…………………………………………………………….(42)
3.8.2 輸送帶訂貨總長度…………………………………………………………(42)
3.8.3 輸送帶訂貨平方米………………………………………………………..(43)
3.8.4 輸送帶總質量…………………………………………………………..….(43)
3.9 托輥的選用計算……………………………………………………..…….(43)
3.10 輸送帶的強度校核…………………………………………………………(44)
3.11 傳動滾筒軸的強度計算和校核………………………………………....(45)
3.11.1 傳動滾筒的載荷集度……………………………………………….…….(45)
3.11.2 傳動滾筒扭矩………………………………………………………………(46)
3.11.3 抗彎截面系數(shù)W…………………………………………………………..(46)
3.11.4 滾筒軸的彎曲強度………………………………………………………..(46)
3.12 傳動滾筒軸承的壽命計算…………………………………………….…(46)
4 用solidworks對連接軸進行有限元分析……………….…...(48)
5 帶式輸送機皮帶跑偏問題…………………………………………......(53)
小結……………………………………………………………………………………..(57)
參考文獻…………………………………………………………………………….(58)
致 謝……………………………………………………………………………..(59)
前 言
帶式輸送機是連續(xù)運行的運輸設備,在冶金、采礦、動力、建材等重工業(yè)部門及交通運輸部門中主要用來運送大量散狀貨物,如礦石、煤、砂等粉、塊狀物和包裝好的成件物品。帶式輸送機是煤礦最理想的高效連續(xù)運輸設備,與其他運輸設備相比,不僅具有長距離、大運量、連續(xù)輸送等優(yōu)點,而且運行可靠,易于實現(xiàn)自動化、集中化控制,特別是對高產高效礦井,帶式輸送機已成為煤炭高效開采機電一體化技術與裝備的關鍵設備。特別是近10年,長距離、大運量、高速度的帶式輸送機的出現(xiàn),使其在礦山建設的井下巷道、礦井地表運輸系統(tǒng)及露天采礦場、選礦廠中的應用又得到進一步推廣。
我國生產制造的帶式輸送機的品種、類型都較多。產量多批次也相對的大,但其技術相對國外還是落后,特別是輸送機的壽命和性能方面。帶式輸送機的技術水平有了很大提高,煤礦井下用大功率、長距離帶式輸送機的關鍵技術研究和新產品開發(fā)都取得了很大的進步。國外帶式輸送機技術的發(fā)展很快,其主要表現(xiàn)在以下兩個方面:1、帶式輸送機的功能多元化、應用范圍擴大化,如高傾角帶輸送機、管狀帶式輸送機、空間轉彎帶式輸送機等各種機型。2、帶式輸送機本身的技術與裝備有了巨大的發(fā)展,尤其是長距離、大運量、高帶速等大型帶式輸送機已成為發(fā)展的主要方向,其核心技術是開發(fā)應用于了帶式輸送機動態(tài)分析與監(jiān)控技術,提高了帶式輸送機的運行性能和可靠性。
帶式輸送機結構簡單、運行可靠、輸送量大、輸送物料廣、裝、卸比較方便等優(yōu)點,所以在各行各業(yè)中得到廣泛應用,尤其在煤礦生產中發(fā)揮著巨大作用。
選擇帶式輸送機這種通用機械的設計作為畢業(yè)設計的選題,能培養(yǎng)我們獨立解決工程實際問題的能力,通過這次畢業(yè)設計是對所學基本理論和專業(yè)知識的一次綜合運用,也使我們的設計、計算和繪圖能力都得到了全面的訓練。
原始參數(shù):
1)輸送物料:煤
2)物料特性:(1)散裝密度:0.90t/m3
(2)在輸送帶上堆積角:ρ=30°
(3)物料溫度:<50℃
4)輸送系統(tǒng)及相關尺寸:(1)運距:30m
(2)提升高度2.5m
(3)最大運量:500t/h
設計解決的問題:
熟悉帶式輸送機的各部分的功能與作用,對主要部件進行選型設計與計算,解決在實際使用中容易出現(xiàn)的問題,并大膽地進行創(chuàng)新設計。
1 帶式輸送機的概述
1.1帶式輸送機的應用
帶式輸送機是一種摩擦驅動以連續(xù)方式運輸物料的機械。應用它,可以將物料在一定的輸送線上,從最初的供料點到最終的卸料點間形成一種物料的輸送流程。它既可以進行碎散物料的輸送,也可以進行成件物品的輸送。除進行純粹的物料輸送外,還可以與各工業(yè)企業(yè)生產流程中的工藝過程的要求相配合,形成有節(jié)奏的流水作業(yè)運輸線。所以帶式輸送機廣泛應用于現(xiàn)代化的各種工業(yè)企業(yè)中。
( 1 ) DTⅡ互型固定式帶式輸送機是通用型系列產品,可廣泛用于冶金、礦山、煤炭、港口、電站、建材、化工、輕工、石油等各個行業(yè)。由單機或多機組合成運輸系統(tǒng)來輸送物料,可輸送松散密度為500 -- 2500kg / ,的各種散狀物料及成件物品。
( 2 ) DTⅡ 江型固定式帶式輸送機適用的工作環(huán)境溫度一般為-25 ~40 ℃ 。對于在特殊環(huán)境中工作的帶式輸送機,如要求具有耐熱、耐寒、防水、防腐、防爆、阻燃等條件,應另行采取相應的防護措施。
( 3 ) DTⅡ型固定式帶式輸送機均按部件系列進行設計。設計者可根據(jù)輸送工藝要求,按不同的地形、工況進行選型設計并組合成整臺輸送機。
( 4 )輸送機允許輸送的物料粒度取決于帶寬、帶速、槽角和傾角,也取決于大塊物料出現(xiàn)的頻率。各種帶寬適用的最大粒度,本系列推薦按表2 一1 選取。當輸送硬巖時,帶寬超過1200mm 后,粒度一般應限制在350mm 范圍內,而不能隨帶寬的增加而加大。
表1-1 各種帶寬適用的最大粒度 mm
帶寬
500
650
800
1000
1200
1400
1600
1800
2000
2200
2400
最大粒度
100
150
200
300
350
350
350
350
350
350
350
注:粒度尺寸系指物料塊最大線性尺寸.
1.2 帶式輸送機的工作原理
帶式輸送機又稱膠帶運輸機,其主要部件是輸送帶,亦稱為膠帶,輸送帶兼作牽引機構和承載機構。帶式輸送機組成及工作原理如圖2-1所示,它主要包括一下幾個部分:輸送帶(通常稱為膠帶)、托輥及中間架、滾筒拉緊裝置、制動裝置、清掃裝置和卸料裝置等。
輸送帶繞經傳動滾筒和機尾換向滾筒形成一個無極的環(huán)形帶。輸送帶的上、下兩部分都支承在托輥上。拉緊裝置給輸送帶以正常運轉所需要的拉緊力。工作時,傳動滾筒通過它和輸送帶之間的摩擦力帶動輸送帶運行。物料從裝載點裝到輸送帶上,形成連續(xù)運動的物流,在卸載點卸載。一般物料是裝載到上帶(承載段)的上面,在機頭滾筒(在此,即是傳動滾筒)卸載,利用專門的卸載裝置也可在中間卸載。
普通型帶式輸送機的機身的上帶是用槽形托輥支撐,以增加物流斷面積,下帶為返回段(不承載的空帶)一般下托輥為平托輥。帶式輸送機可用于水平、傾斜和垂直運輸。對于普通型帶式輸送機傾斜向上運輸,其傾斜角不超過18°,向下運輸不超過15°。
輸送帶是帶式輸送機部件中最昂貴和最易磨損的部件。當輸送磨損性強的物料時,如鐵礦石等,輸送帶的耐久性要顯著降低。
提高傳動裝置的牽引力可以從以下三個方面考慮:
(1)增大拉緊力。增加初張力可使輸送帶在傳動滾筒分離點的張力增加,此法提高牽引力雖然是可行的。但因增大必須相應地增大輸送帶斷面,這樣導致傳動裝置的結構尺寸加大,是不經濟的。故設計時不宜采用。但在運轉中由于運輸帶伸長,張力減小,造成牽引力下降,可以利用拉緊裝置適當?shù)卦龃蟪鯊埩?,從而增大,以提高牽引力?
(2)增加圍包角對需要牽引力較大的場合,可采用雙滾筒傳動,以增大圍包角。
(3)增大摩擦系數(shù)其具體措施可在傳動滾筒上覆蓋摩擦系數(shù)較大的襯墊,以增大摩擦系數(shù)。
通過對上述傳動原理的闡述可以看出,增大圍包角是增大牽引力的有效方法。故在傳動中擬采用這種方法。
1.3帶式輸送機的種類
1.3.1 按承載能力分類
輕型帶式輸送機:專門應用于輕型載荷的輸送機。
通用帶式輸送機:這是應用最廣泛的帶式輸送機,其他類型帶式輸送機都是這種帶式輸送機的變形。
鋼繩芯帶式輸送機:應用于重型載荷的輸送機。
1.3.2 按可否移動分類
固定帶式輸送機:輸送機安裝在固定的地點,不需要移動。
移動帶式輸送機:具有移動機構,如輪,履帶。
移置帶式輸送機:通過移動設備變換設備的位置。
可伸縮帶式輸送機:通過儲帶裝置改變輸送機的長度。
1.3.3 按輸送帶的結構形式分類
普通輸送帶帶式輸送機:輸送帶為平型,帶芯為帆布或尼龍帆布或鋼繩芯。
鋼繩牽引帶式輸送機:用鋼絲繩作為牽引機構,用帶有耳邊的輸送帶作為承載機構。
壓帶式輸送機:用兩條閉環(huán)帶,其中一條為承載帶,另一條為壓帶。
鋼帶輸送機:輸送帶是鋼帶。
網帶輸送機:輸送帶是網帶。
管狀帶式輸送機:輸送帶圍包成管狀或用特殊結構輸送帶密閉輸送物料。
波狀擋邊帶式輸送機:輸送帶邊上有擋邊以增大物料的截面,傾斜角度大時,一般在橫抽設置擋板。
花紡帶式輸送機:用花紋帶以增大物料和輸送帶的摩擦,提高輸送傾角。
1.4帶式輸送機的結構和布置形式
帶式輸送機的結構
圖1-1為帶式輸送機的結構簡圖。它由輸送帶、驅動裝置、托輥、機架、清掃器、拉緊裝置和制動裝置等組成。
圖1-1 帶式輸送機整機結構
1-頭部漏斗;2-機架;3-頭部清掃器;4-傳動滾簡;5-安全保護裝置;6-輸送帶;7-承載托輥;
8-緩沖托輥;9-導料槽;10-改向滾簡;11-拉緊裝置;12-尾架;13-空段清掃器;14-回權托輥巧;
15-中間架;16-電動機;17-液力偶合器;18-制動器;19-減速器;20-聯(lián)軸器
帶式輸送機的布置形式(見圖1-2)
圖1-2 帶式輸送機的典型布置
1.5帶式輸送機的性能
1 輸送物料種類廣泛
輸送物料的范圍可以從很細的各種粉狀物料到大塊的礦石、石塊、煤或紙漿木料,以最小的落差輸送精細篩分過的或易碎的物料。由于橡膠輸送帶具有較高的抗腐蝕性,在輸送強腐蝕性或強磨損性物料時維修費用比較低。帶式輸送機還可以輸送堿性物料和一定溫度熱料,也可以運送成件物品。
2 輸送能力范圍寬
帶式輸送機的輸送能力可以滿足任何要求的輸送任務,既有輕型帶式輸送機完成輸送量較小的輸送任務,又有大型帶式輸送機實現(xiàn)每小時數(shù)千噸的輸送任務。
3 輸送統(tǒng)一線路的適應性強
帶式輸送機可以適應坡度為30%~35%的地形,而對于卡車運輸來說公能適應原有自然地形的坡度為6%~8%。輸送機線路可以適應地形, 在空間和水平面上彎曲從而降低基建投資,并能避免在廠內和其他擁擠地區(qū),以免受鐵路、公路、以及河流、山脈的干擾。帶式輸送機的運輸線路十分靈活的,線路長度可根據(jù)需要延長。
4 靈活的裝卸料
帶式輸送機可根據(jù)工藝流程要求靈活地從一點或多點受料,也可以向多點或幾個區(qū)段卸料。
5 可靠性強
帶式輸送機的可靠性已成為所有工業(yè)領域中的使用經驗所證實,它的運行極為可靠,在許多需要連續(xù)運行的重要生產單位,如在發(fā)電廠內煤的輸送,鋼鐵廠和水泥廠散物料的輸送以及港口內船舶裝卸散狀物料 等,都獲得了廣泛的應用。
6 安全性高
帶式輸送機具有很高的安全性,需要的生產人員很少,與其他運輸方式相比發(fā)生事故的機會比較少。不會因大塊物料掉下來砸傷人員或由于大型笨重的車輛操縱失靈而引起事故。
7 費用低
帶式輸送機系統(tǒng)運送每噸散狀物料所需的勞動工時和能耗,在所有運輸散狀物料工具中通常是最低的。而且它所占用維修人員的時間少,較小零件的維修和更換可在現(xiàn)場很快地完成,維修費用低。
1.6 帶式輸送機的發(fā)展狀況
目前帶式輸送機已廣泛應用于國民經經濟各個部門,近年來在露天礦和地下礦的聯(lián)合運輸系統(tǒng)中帶式輸送機又成為重要的組成部分。主要有:鋼繩芯帶式輸送機、鋼繩牽引膠帶輸送機和排棄場的連續(xù)輸送設施等。
這些輸送機的特點是輸送能力大(可達30000t/h),適用范圍廣(可運送礦石,煤炭,巖石和各種粉狀物料,特定條件下也可以運人),安全可靠,自動化程度高,設備維護檢修容易,爬坡能力大(可達16°),經營費用低,由于縮短運輸距離可節(jié)省基建投資。
目前,帶式輸送機的發(fā)展趨勢是:大運輸能力、大帶寬、大傾角、增加單機長度和水平轉彎,合理使用膠帶張力,降低物料輸送能耗,清理膠帶的最佳方法等。我國已于1978年完成了鋼繩芯帶式輸送機的定型設計。鋼繩芯帶式輸送機的適用范圍:
(1)適用于環(huán)境溫度一般為°°C;在寒冷地區(qū)驅動站應有采暖設施;
(2)可做水平運輸,傾斜向上(16°)和向下()運輸,也可以轉彎運輸;運輸距離長,單機輸送可達15km;
(3)可露天鋪設,運輸線可設防護罩或設通廊;
(4)輸送帶伸長率為普通帶的1/5左右;其使用壽命比普通膠帶長;其成槽性好;運輸距離大。
2 帶式輸送機部件的選用
2.1 輸送帶
輸送帶在帶式輸送機中既是承載構件又是牽引構件(鋼絲繩牽引帶式輸送機除外),它不僅要有承載能力,還要有足夠的抗拉強度。輸送帶有帶芯(骨架)和覆蓋層組成,其中覆蓋層又分為上覆蓋膠,邊條膠,下覆蓋膠。
輸送機的帶芯主要是有各種織物(棉織物,各種化纖織物以及混紡織物等)或鋼絲繩構成。它們是輸送帶的骨干層,幾乎承載輸送帶工作時的全部負載。因此,帶芯材料必須有一定的強度和剛度。覆蓋膠用來保護中間帶芯不受機械損傷以及周圍有害介質的影響。上覆蓋膠層一般較厚,這是輸送帶的承載面,直接與物料接觸并承受物料的沖擊和磨損。下覆膠層是輸送帶與支撐托輥接觸的一面,主要承受壓力,為了減少輸送帶沿托輥運行時的壓陷阻力,下覆蓋膠的厚度一般較薄。側邊覆蓋膠的作用是當輸送帶發(fā)生跑偏使側面與機架相碰時,保護帶芯不受機械損傷。
2.1.1 輸送帶的分類
按輸送帶帶芯結構及材料不同,輸送帶被分成織物層芯和鋼絲繩芯兩大類??椢飳有居址譃榉謱涌椢镄竞驼w織物層層芯兩類,且織物層芯的材質有棉,尼龍和維綸等。
整體編織織物層芯輸送帶與分層織物層芯輸送帶相比,在帶強度相同的情況下,整體輸送帶的厚度小,柔性好,耐沖擊性好,使用中不會發(fā)生層間剝裂,但伸長率較高,在使用過程中,需要較大的拉緊行程。
鋼絲繩芯輸送帶是有許多柔軟的細鋼絲繩相隔一定的間距排列,用與鋼絲繩有良好粘合性的膠料粘合而成。鋼絲繩芯輸送帶的縱向拉伸強度高,抗彎曲性能好;伸長率小,需要拉緊行程小。同其它輸送帶相比,在帶強度相同的前提下,鋼絲繩芯輸送帶的厚度小。
在鋼芯繩中,鋼絲繩的質量是決定輸送帶使用壽命長短的關鍵因素之一,必須具有以下特點:
(1)應具有較高的破斷強度。鋼芯強度高則輸送帶亦可增大,從另一個角度來說,繩芯強度越高,所用繩之直徑即可縮小,輸送帶可以做的薄些,已達到減小輸送機尺寸的目的。
(2)繩芯與橡膠應具有較高的黏著力。這對于用硫化接頭具有重大意義.提高鋼繩與橡膠之間黏著力的主要措施是在鋼繩表面電鍍黃銅及采用硬質橡膠等。
(3)應具有較高的耐疲勞強度,否則鋼繩疲勞后,它與橡膠的黏著力即下降乃至完全分離。
(4)應具有較好的柔性.制造過程中采用預變形措施以消除鋼繩中的殘余應力,可使鋼繩芯具有較好的柔性而不松散。
輸送帶上下覆蓋膠目前多采用天然橡膠,國外有采用耐磨和抗風化的橡膠的膠帶,如輪胎花紋橡膠的改良膠作為覆蓋膠,以提高其使用壽命。輸送帶的中間用合成橡膠與天然膠的混合物。
鋼繩芯帶與普通帶相比較以下優(yōu)點:
(1)強度高。由于強度高,可使1臺輸送機的長度增大很多。目前國內鋼繩芯輸送帶輸送機1臺長度達幾公里、幾十公里。伸長量小.鋼繩芯帶的伸長量約為帆布帶伸長量的十分之一,因此拉緊裝置縱向彈性高。這樣張力傳播速度快,起動和制動時不會出現(xiàn)浪涌現(xiàn)象。
(2)成槽性好。由于鋼繩芯是沿著輸送帶縱向排列的,而且只有一層,與托輥貼合緊密,可以形成較大的槽角。近年來鋼繩芯輸送帶輸送機的槽角多數(shù)為35o,這樣不僅可以增大運量,而且可以防止輸送帶跑偏。
(3)抗沖擊性及抗彎曲疲勞性好,使用壽命長。由于鋼繩芯是以很細的鋼絲捻成鋼繩帶芯,它彎曲疲勞和耐沖擊性非常好。
(4)破損后容易修補,鋼繩芯輸送帶一旦出現(xiàn)破損,破傷幾乎不再擴大,修補也很容易。相反,帆布帶損傷后,會由于水浸等原因而引起剝離。使帆布帶強度降低。
(5)接頭壽命長。這種輸送帶由于采用硫化膠接,接頭壽命很長,經驗表明有的接頭使用十余年尚未損壞。
(6)輸送機的滾筒小。鋼繩芯輸送帶由于帶芯是單層細鋼絲繩,彎曲疲勞輕微,允許滾筒直徑比用帆布輸送帶的。
鋼繩芯輸送帶也存在一些缺點:
(1)制造工藝要求高,必須保證各鋼繩芯的張力均勻,否則輸送帶運轉中由于張力不均而發(fā)生跑偏現(xiàn)象。
(2)由于輸送帶內無橫向鋼繩芯及帆布層,抗縱向撕裂的能力要避免縱向撕裂。
(3)易斷絲。當滾筒表面與輸送帶之間卡進物料時,容易引起輸送帶鋼繩芯的斷絲。因此,要求要有可靠的清掃裝置。
2.1.2 輸送帶的性能要求
(1)要求輸送帶自身質量小,抗拉強度和抗彎強度大,成槽性能好;
(2)由于承受交變彎曲載荷,故要求帶芯夾層與橡膠層間要有較高的粘附強度,以防層間剝離和撕開;
(3)要求加工精細,保證在受純拉伸時,各夾層均勻承受載荷;
(4)輸送帶的覆蓋膠和夾層帶芯都應具有較高的抗沖擊性能和抗機械損傷性能;
(5)為延長使用壽命,應使輸送帶具有足夠的耐磨性;
(6)為使驅動時所需的初張力盡量小,故要求輸送帶具有高摩擦系數(shù);
(7)具有較好的外形穩(wěn)定性,既無太大的縱向彈性伸長又具有較小的永久伸長,其張緊行程不超過帶式輸送機長度的1.5%;
(8)輸送帶端頭連接要簡單,但其接頭處的強度不應顯著減弱,并且接頭處厚度必須與其它部位厚度相同。
在輸送帶承受較大張力時,應選取盡可能少的層數(shù)而強度又較高的帶芯,比選取居數(shù)多而強度一般的帶芯容易得到滿足。薄的輸送帶彎曲性能好,并且在它繞過滾筒彎曲運行時,帶芯各夾層間受載均勻,因而可選取較小的拉伸安全系數(shù);對于運送塊度和硬度大的物料,可選用多層帶芯的輸送帶。
2.1.3 輸送帶的選用
1.類型選擇
各類輸送帶適宜的工作條件見表1-2。
普通輸送帶一般多采用橡膠覆蓋層,其適用的環(huán)境溫度與輸送機一樣為-20-40℃。環(huán)境溫度低于-5 ℃ 時,不宜采用維綸帆布芯膠帶。環(huán)境溫度低于-15℃ 時,不宜采用普通棉帆布芯膠帶。在環(huán)境溫度低于-20℃條件下采用鋼繩芯膠帶時,應采用耐寒型膠帶并與制造廠簽訂保證協(xié)議。
普通橡膠輸送帶適用的輸送物料溫度一般為常溫。當輸送物料溫度為80-200℃ 時,應采用耐熱帶。我國生產的耐熱帶分三型,即1型100℃ 、2型125℃ 、3型150℃,而有的廠生產的特種耐熱帶其耐熱類型為1型130℃、2型160℃、3型200 ℃。
物 料 及
工 作 條 件 特 性
宜 選 輸 送 帶
類 型
芯層代號
履蓋膠代號
松散密度較小、摩擦性較小的物料,如谷物、纖維、木屑、粉末及包裝物品等
輕型(薄型)
CC、VV 、NN
NR、PVC
松散密度在2.5t /m3 以下的中小塊礦石、原煤、焦炭和砂礫等對物送帶磨損不太嚴重的物料
普通型
CC、VV 、NN、EP
NR 、SBR
松散密度較大的大、中、小塊礦石、原煤等沖擊力較大、磨損較重的物料,軸送盤大、軸送距離較長的輸送機
強力型
NN 、EP 、ST
NR 、SBR 、IR
礦井下運送物料
井巷型
CC、VV 、NN、EP
PVC 、CR 、CPE 、NBR
工作區(qū)域易于爆炸易于起火(如地下煤礦)
難燃型
CC、NN、EP、PVC、 PVG 、ST
CR 、PVC 、CPE 、NBR
輸送80一150℃的焦炭、水泥、化肥、燒結礦和鑄件等
耐熱型
CC、VV、EP、NN、ST
SBR 、CR
工作環(huán)境溫度低達-30-40 ℃?
耐寒型
CC、VV、EP、NN、ST
NR 、BR、 IR
輸送150-500℃的礦渣和鑄件等熱物料
耐高溫型
難燃型
CC
EPCM 、IIR
輸送機傾斜角度較大
花紋型波狀擋邊型
CC、VV、NN、EP
NR 、SBR
輸送最大、輸送距離長
高強力型
ST
NR 、SBR 、IR
物料沖擊較嚴重
耐沖擊型
VV、NN、EP、ST
NR IR
物料含油或有機溶劑
耐油型
CC、VV、NN、EP、ST
CR、NBR、PVC
物料帶腐蝕性(酸、堿)
耐酸堿型
CC、VV、NN、EP、ST
CR IIR NR
食品,要求不污染
衛(wèi)生型
CC 、NN
NR、PVC、NBR
物料帶靜電
導靜電型
CC 、NN
SBR、NR、BR、CR
表1-2 輸送帶類型及適應工作條件
煤礦井下輸送機、用作高爐帶式上料機的輸送機及其他有火災危險的場所使用的輸送機,應采用阻燃型難燃型輸送帶二訂貨時應與制造廠簽訂保證協(xié)議。
輸送具有酸性、堿性和其他腐蝕性物料或含油物料時,應采用相應的耐酸、耐堿、耐腐蝕或耐油橡膠帶或塑料帶。
PVC 類型的塑料覆蓋層輸送帶在井下作業(yè)有很好的表現(xiàn),但使用這種輸送帶時,輸送機傾角一般不得大于130 ,采用特殊措施者除外。
2. 帶寬
根據(jù)輸送量計算后確定計算出的帶寬,須用所運物料粒度進行核算。
3. 層數(shù)
經計算確定,但確定的層數(shù).應在許可范圍之內。
4 .覆蓋層厚度
鋼絲芯輸送帶上下覆蓋層厚度為定值。一般能滿足使用要求勿需設計人再作選擇。
帆布芯輸送帶下層厚度一般為1.5mm ,有特殊需要時,可加厚至3mm。上層厚度根據(jù)所輸送物料的堆積厚度、粒度、落料高度及物料的磨琢性確定,可按表1-3 選定。常規(guī)條件下,推薦按表1-4 、表1-5、表1-6 選?。ㄒ肈IN22101)。
表1-3 橡膠輸送帶覆蓋膠的推薦厚度 mm
物料特性
物料名稱
覆蓋膠厚度/mm
上膠厚
下膠厚
ρ<2000kg/m3中小粒度或磨損性的小物料
焦炭、煤、白云石、石灰石、燒結混合料、砂等
3.0
1.5
ρ<2000kg/m3塊度200mm磨損性較大的物料
破碎后的礦石、選破產品、各種巖石,油母頁巖
4.5
1.5
ρ>2t/m3,磨損性大的大塊物料
大塊鐵礦石、油母頁巖等
6.0
1.5
表1-4 輸送帶承載和空載面覆蓋膠層最小厚度 mm
抗拉體(芯層)材料
最小厚度值
CC (棉帆布)
NN (尼龍帆布)
EP (聚酯帆布)
根據(jù)不同抗拉體(芯層)分別為1~2mm
ST (鋼絲繩芯)
0.7d(mm) 最小4mm
表1-5 相應于表1-4最小厚度的承載面附加厚度的標準值 mm
有影響的參數(shù)
評 價 值
總數(shù)
載荷情況
載荷頻繁度
粒 度
密 度
物料磨琢性
有利
正常
不利
少
正常
頻繁
細
正常
粗
輕
正常
重
小
中等
劇烈
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
表1-6 附加厚度的標準值 mm
2.2驅動裝置
帶式輸送機的動力部分,由安裝在驅動架上的Y 系列鼠籠型電機、液力偶合器(或梅花形彈性聯(lián)軸器)、減速器、ZL 型彈性柱銷齒式聯(lián)軸器、制動器(逆止器)等組成。
(1)本系列電機功率為2.2 ~315kw ,減速器優(yōu)先采用DBY型、DCY 型硬齒面圓錐圓柱齒輪減速器,傳動比為8~50,共配置了221 組驅動單元及相應的驅動架。平行軸硬齒面圓柱齒輪減速器驅動裝置按本章附錄一選用。
(2)按帶寬、帶速、電機功率從“驅動裝置選擇表”中確定組合號,然后在“驅動裝置組合表”中確定所需驅動單元。
(3)采用帶后輔腔的液力偶合器作為本系列帶式輸送機的專用偶合器,其起動力矩系數(shù)限制在1.3~1.7 之間。選用時,設計者應按所需功率和起動時最大力矩,根據(jù)制造廠的偶合器特征曲線選定充油量,并在總圖中標注充油量。
(4)本系列采用液壓推桿閘瓦式制動器,選用時要根據(jù)制動力矩與發(fā)熱情況選用相應規(guī)格的推動器。制動器推桿的工作制為100%持續(xù)率。
(5)本系列提供的滾柱逆止器,逆止力矩為6.9 ~ 23.3kN· m ,安裝在DCY315 以下規(guī)格的減速器輸出軸上,其他型式的逆止器如NYD 型凸塊式逆止器及非接觸式逆止器可由設計者自行配置。在一臺輸送機上采用多臺機械逆止器時.如果不能保證均勻分擔載荷,則每臺逆止器都必須按一臺輸送機可能出現(xiàn)的最大逆轉力矩來選取。同時還應驗算傳動滾筒軸或減速器軸的強度.采用多電機驅動及大規(guī)格的逆止器應盡量安裝在減速器輸出軸或傳動滾簡軸上。
(6)輸出軸用彈性齒式住銷聯(lián)軸器,由于配套規(guī)格較多而未列入驅動單元,整機設計選用時應在總圖中標出序號,并列出所選用的聯(lián)軸器型號規(guī)格。
(7)本系列驅動單元為單電機典型配置,如配置條件發(fā)生變化或采用多電機驅動時,驅動單元的組合形式可由設計者自行調整。
(8)末級中心距大于或等干355mm 的硬齒面減速器熱功率驗算通不過時,設計者應采取相應措施。
2.3傳動滾筒
2.3.1 傳動滾筒的作用及類型
傳動滾筒是傳動動力的主要部件。作為單點驅動方式來講,可分成單滾筒傳動及雙滾筒傳動。單滾筒傳動多用于功率不太大的輸送機上,功率較大的輸送機可采用雙滾筒傳動,其特點是結構緊湊,還可增加圍包角以增加傳動滾筒所能傳遞的牽引力。使用雙滾筒傳動時可以采用多電機分別傳動,可以利用齒輪傳動裝置使兩滾筒同速運轉。如雙滾筒傳動仍不需要牽引力需要,可采用多點驅動方式。
輸送機的傳動滾筒結構有鋼板焊接結構及鑄鋼或鑄鐵結構,新設計產品全部采用滾動軸承。傳動滾筒的表面形式有鋼制光面滾筒、鑄(包)膠滾筒等,鋼制光面滾筒主要缺點是表面磨擦系數(shù)小,所以一般用在周圍環(huán)境濕度小的短距離輸送機上,鑄(包)膠滾筒的主要優(yōu)點是表面磨擦系數(shù)大,適用于環(huán)境濕度大、運距長的輸送機,鑄(包)膠滾筒按其表面形狀又可分為光面鑄(包)膠滾筒、人字形溝槽鑄(包)膠滾筒和菱形鑄(包)膠滾筒。
2.3.2 傳動滾筒的選型及設計
傳動滾筒是傳遞動力的主要部件,它是依靠與輸送帶之間的摩擦力帶動輸送帶運行的部件。傳動滾筒根據(jù)承載能力分為輕型、中型和重型三種。同一種滾筒直徑又有幾種不同的軸徑和中心跨距供選用。
① 輕型:軸承孔徑80100㎜。軸與輪轂為單鍵聯(lián)接的單幅板焊接筒體結構。單向出軸。
② 中型:軸承孔徑120180㎜。軸與輪轂為脹套聯(lián)接。
③ 重型:軸承孔徑200220㎜。軸與輪轂為脹套聯(lián)接,筒體為鑄焊結構。有單向出軸和雙向出軸兩種。
輸送機的傳動滾筒結構有鋼板焊接結構及鑄鋼或鑄鐵結構,驅動滾筒的表面形式有鋼制光面滾筒、鑄(包)膠滾筒等,鋼制光面滾筒主要缺點是表面摩擦系數(shù)小,一般用在周圍環(huán)境濕度小的短距離輸送機上。鑄(包)膠滾筒的主要優(yōu)點是表面摩擦系數(shù)大,適用于環(huán)境濕度大、運距長的輸送機,鑄(包)膠滾筒按其表面形狀又可分為光面鑄(包)膠滾筒、人字形溝槽鑄(包)膠滾筒和菱形鑄(包)膠滾筒。
人字形溝槽鑄(包)膠滾筒是為了增大摩擦系數(shù),在鋼制光面滾筒表面上,加一層帶人字溝槽的橡膠層面,這種滾筒有方向性,不得反向運轉。人字形溝槽鑄(包)膠滾筒,溝槽能使水的薄膜中斷,不積水,同時輸送帶與滾筒接觸時,輸送帶表面能擠壓到溝槽里,由于這兩種原因,即使在潮濕的場合工作,摩擦系數(shù)降低也很小。考慮到本設計的實際情況和輸送機的工作環(huán)境:用于工廠生產,環(huán)境潮濕,功率消耗大,易打滑,所以我們選擇這種滾筒。鑄膠膠面厚且耐磨,質量好;而包膠膠皮易掉,螺釘頭容易露出,刮傷皮帶,使用壽命較短,比較二者選用鑄膠滾筒。
2.3.3 傳動滾筒結構
其結構示意圖如圖5-2所示:
2.3.4 改向滾筒
用于改變輸送帶的運行方向或增加輸送帶與傳動滾筒間的圍包角。
(1)改向滾簡按承載能力分輕型、中型和重型,分檔直徑分別為50~10Omm 、120~180mm 及200~260mm,結構型式與傳動滾筒一致。
(2)改向滾筒用于改變輸送帶運行方向。用于改向時一般放在尾部或垂直拉緊裝置處。改向放在垂直拉緊裝置的上方。增面滾簡一般用于小于或等于的場合。
(3)改向滾筒覆面有裸露光鋼面和平滑膠面兩種。
(4)改向滾筒與傳動滾筒直徑匹配見表1-7 、表2-22。
表1-7 改向滾筒與傳動滾筒直徑匹配 mm
評價值總數(shù)
5~6
7~8
9~11
12~13
14~15
附加厚度
0~1
1~3
3~6
6~10
大于10
帶寬
傳動滾筒直徑
尾部頭部探頭滾筒直徑
頭部探頭滾筒直徑
改向滾筒直徑
<改向滾筒直徑
500
500
400
500
315
250
650
500
630
400
500
500
630
315
400
250
315
800
500
630
800
1000
400
500
630
800
500
630
800
1000
315
400
500
630
250
315
400
500
1000
630
800
1000
500
630
800
630
800
1000
400
500
630
315
400
500
1200
630
800
1000
500
630
800
630
800
1000
400
500
630
315
400
500
1400
800
1000
630
800
800
1000
500
630
400
500
表1-8 按穩(wěn)定工況確定的最小滾筒直徑 mm
傳動滾筒直徑D
最小直徑(無摩擦面層)
允許的最高輸送帶張力利用率
>60%-100%
>30%-60%
30%
滾筒組別
滾筒組別
滾筒組別
A
B
C
A
B
C
A
B
C
500
500
400
315
400
315
250
315
315
250
630
800
1000
1250
1600
630
800
1000
1250
1600
500
630
800
1000
1250
400
500
630
800
1000
500
630
800
1000
1250
400
500
630
800
1000
315
400
500
630
800
400
500
630
800
1000
400
500
630
800
1000
315
400
500
630
800
注:A-傳動滾筒;B-改向滾筒(180度);C-改向滾筒(<180度)。
2.4 托輥
托輥是帶式輸送機的輸送帶及貨載的支承裝置。托輥隨輸送帶的運行而轉動,以減小輸送機的運行阻力。托輥質量的好壞取決帶式輸送機的使用效果,特別是輸送帶的使用壽命。而托輥的維修費用成為帶式輸送機運營費用的重要組成部分。所以要求托輥:結構合理,經久耐用,回轉阻力系數(shù)小,密封可靠,灰塵、煤粉不能進入軸承,從而使輸送機運轉阻力小、節(jié)省能源、延長使用壽命。
托輥分鋼托輥和塑料托輥兩種。鋼托輥多由無縫鋼管制成。托輥輥子直徑與輸送帶寬度有關。通用固定式輸送機標準設計中,帶寬B為800mm以下的輸送機,選用托輥直徑為φ89mm;帶寬1000—1400mm選用輥子直徑為φ108mm。
托輥按用途又可分為槽形托輥、平形托輥、緩沖托輥和調心托輥,如圖1-3、1-4、l-5所示。
圖1-3槽形和平行上托輥
a-槽形托輥;b-平行托輥
圖1-4 緩沖托輥
a- 橡膠圈式緩沖托輥;b-彈簧板式托輥
圖1-5調心托輥
a- 錐形調心托輥 b- 旋轉調心托輥
表1-9 上托輥的間距
松散物料的堆積密度γ,t/m3
膠帶寬B,mm
500
600
800
1000
1200
1400
上托輥間距l(xiāng)0,mm
≤1.6
>1.6
1200
1200
1200
1100
1200
1100
為了提高生產率,輸送散狀物料,支承輸送帶重段的上托輥一般采用槽型托輥;輸送成件物品輸送機的上托輥,選煤廠手選輸送帶的上托輥,及支承輸送帶回空段的下托輥,均采用平形托輥。
槽形托輥中傾斜托輥與水平托輥軸線之問的夾角稱為槽角。槽角大小是決定運輸物料的重要參數(shù)。我國過去的帶式輸送機,槽角一般為20°。TD75型系列設計,槽角采用30°,也有采用35°和45°的。在相同帶寬條件下,槽角由20°增至30°,輸送帶運送散狀物料的橫斷面積增大20%,運輸量可提高13%,并可在運行中減少物料灑落。
托輥間距的布置應保證輸送帶在托輥間所產生的下垂度盡可能地小。輸送帶在相鄰托輥間的下垂度一般不超過托輥間距的2.5%。輸送帶上托輥間距見表1-9;下托輥間距一般取3000mm或者是上托輥間距的2倍;在受料處,托輥的間距為300—600mm。凸弧段上托輥間距為水乎段托輥間距的l/2。輸送機頭部滾筒中心線到第一組槽形上托輥的距離,一般可取為上托輥間距的1—1.3倍,尾部滾筒到第一組托輥間距不小于上托輥間距。
在輸送帶的受料處,須裝設緩沖托輥,以減少沖擊作用,保護輸送帶;緩沖托輥的構造與一般托輥基本相同,標準設計中采用橡膠因式和彈簧板式兩種,如圖1-4所示。橡膠因式就是在管體外面套裝若干橡膠圈;彈簧板式是托輥的支座具有彈性,以緩沖物料的沖擊。
為了防止和克服輸送帶的跑偏,在輸送帶的重載段每隔10組槽形托輥,設置一組槽形調心托輥,其構造如圖1-5a所示。在輸送帶的回空段,每隔6—10組下托輥設置一組下平形調心托輥如圖1-6所示。
圖1-6 平行調心托輥
a- 平行上調心托輥;b-平行下調心托輥
槽形調心托輥或平形調心托輥,除了完成一般支承作用外,托輥架還能繞垂直軸自由回轉。當輸送帶跑偏時,輸送帶的一邊便壓在立輥上,使其旋轉,從而帶動托輥架回轉一定的角度a(見圖1-5b),這時托輥速度與帶速方向不一致,產生一個與輸送帶跑偏方向相反的分速度,使輸送帶向輸送機中心線=側移動,從而糾正跑偏現(xiàn)象。當輸送帶回復到運行中心位置時,回轉的托輥架也恢復正常位置。
2.5 機架與中間架
機架是支承滾筒及承受輸送帶張力的裝置。本系列機架采用了結構緊湊、剛性好、強度高的三角形機架。
(1)機架有四種結構如圖所示??蓾M足帶寬500~1400㎜、傾角、圍包角多種形式的典型布置。并能與漏斗配套使用。
圖6-1 機 架
a.01機架:用于傾角的頭部傳動及頭部卸料滾筒。選用時應標注角度。
b.02機架:用于傾角的尾部改向滾筒或中間卸料的傳動滾筒。
c.03機架:用于傾角的頭部探頭滾筒或頭部卸料傳動滾筒,圍包角小于或等于。
d.04機架:用于傳動滾筒設在下分支的機架??捎糜趩螡L筒傳動,也可以用于雙滾筒傳動(兩組機架配套使用)。圍包角大于或等于。
e.01,02機架適于帶寬500~1400mm;03,04機架適于帶寬800~1400mm。
(2).本系列機架適用于輸送帶強度范圍;CC-56棉帆布3~8層,NN-100~300尼龍帶及EP-100~300聚酯帶3~6層;鋼繩芯帶ST2000以下。
(3) 滾筒直徑范圍:500~1000mm。
(4) 中間架用于安裝托輥。標準長度為6000mm,非標準長度為3000~6000mm及凸凹弧段中間架;支腿有I型(無斜撐)、H型(有斜撐)兩種。中間架和中間架支腿全部采用螺栓聯(lián)接,便于運輸和安裝。
中間架為螺栓聯(lián)接的快速拆裝支架,它由鋼管、H型支架、下托輥、和掛鉤式槽形托輥組成,是機器的非固定部分,鋼管作為可拆卸的機身,用彈性柱銷架設在H型支架的管座中。柱銷固裝在鋼管上,只是打入的位置適當轉動鋼管,就能方便地從管座中抽出或放入。
槽形托輥軸的兩端加工成矩形,這樣就可以把單個滾筒放進機架中,即可以定位又可以起到固定軸的作用。因為皮帶運輸機的滾筒很多,損壞的也經常,當輥子需要維修時,就可以快速取下,以便于維修和更換,對運輸很小,提高了工作效率。這就是快速拆裝的特點。
中間架作為輸送機架的一部分,輸送機架的選型即決定了中間架的型式。
輸送機的機架隨輸送機類型的不同而不同
收藏