1914_機(jī)械廠變電所的電氣設(shè)計(jì)
1914_機(jī)械廠變電所的電氣設(shè)計(jì),機(jī)械廠,變電所,電氣設(shè)計(jì)
畢業(yè)設(shè)計(jì)文獻(xiàn)綜述院 ( 系 ) 名 稱 工 學(xué) 院 機(jī) 械 系專 業(yè) 名 稱 機(jī) 械 設(shè) 計(jì) 制 造 及 其 自 動(dòng) 化學(xué) 生 姓 名 史 煒 指 導(dǎo) 教 師 穆 國 華 2012 年 03 月 10 日黃 河 科 技 學(xué) 院 畢 業(yè) 設(shè) 計(jì) (文 獻(xiàn) 綜 述 ) 第 1 頁 機(jī)械廠變電所電氣設(shè)計(jì)綜述1 序言電能是發(fā)展國民經(jīng)濟(jì)的基礎(chǔ),是一種無形的、不能大量存儲(chǔ)的二次能源,同時(shí)也是現(xiàn)代社會(huì)中最重要也是最方便的能源。隨著工業(yè)時(shí)代的發(fā)展,電力已成為人類歷史發(fā)展的主要?jiǎng)恿Y源。要科學(xué)合理的駕馭電力,必須從電力工程的設(shè)計(jì)原則和方法上理解和掌握其精髓,提高電力系統(tǒng)的安全可靠性和運(yùn)行效率,從而達(dá)到降低生產(chǎn)成本提高經(jīng)濟(jì)效益的目的。變電所是電力系統(tǒng)的重要組成部分,它直接影響整個(gè)電力系統(tǒng)的安全與經(jīng)濟(jì)運(yùn)行,是聯(lián)系發(fā)電廠和用戶的中間環(huán)節(jié),起著變換和分配電能的作用。本次設(shè)計(jì)將是對我所學(xué)知識(shí)進(jìn)行的一次實(shí)踐,使我所學(xué)的專業(yè)知識(shí)得到鞏固和加深。2 變電所主體設(shè)計(jì)2.1 變電所設(shè)計(jì)的基本原則變電所是聯(lián)系發(fā)電廠和用戶的中間環(huán)節(jié),起著變換和分配電能的作用。因此,變電所的作用顯得尤為重要。首先要滿足的就是變電所的設(shè)計(jì)規(guī)范,安全可靠地發(fā)、供電是對電力系統(tǒng)運(yùn)行的首要要求。1、變電所的設(shè)計(jì)要認(rèn)真執(zhí)行國家的有關(guān)技術(shù)經(jīng)濟(jì)政策,符合安全可靠、技術(shù)先進(jìn)和經(jīng)濟(jì)合理的要求。2、變電所的設(shè)計(jì)應(yīng)根據(jù)工程的 5-10 年發(fā)展規(guī)劃進(jìn)行,做到遠(yuǎn)、近期結(jié)合,以近期為主,正確處理近期建設(shè)與遠(yuǎn)期發(fā)展的關(guān)系,適當(dāng)考慮擴(kuò)建的可能。3、變電所的設(shè)計(jì),必須從全局出發(fā),統(tǒng)籌兼顧,按照負(fù)荷性質(zhì)、用電容量、工程特點(diǎn)和地區(qū)供電條件,結(jié)合國情合理的確定設(shè)計(jì)方案。4、變電所的設(shè)計(jì),必須堅(jiān)持節(jié)約用地的原則。2.2 變電所所址的選擇原則1、盡量接近負(fù)荷中心。2、進(jìn)出線方便,特別是要便于架空進(jìn)出線。3、接近電源側(cè),特別是工廠的總降壓變電所和高壓配電所。4、設(shè)備運(yùn)輸方便。黃 河 科 技 學(xué) 院 畢 業(yè) 設(shè) 計(jì) (文 獻(xiàn) 綜 述 ) 第 2 頁 5、不應(yīng)設(shè)在有劇烈振動(dòng)或高溫的場所,無法避開時(shí),應(yīng)有防振和隔熱措施。6、不宜設(shè)在多塵或有腐蝕性氣體的場所。7、不應(yīng)設(shè)在廁所、浴室和其他經(jīng)常積水場所的正下方,且不宜與上述場所相貼鄰。8、不應(yīng)設(shè)在有爆炸危險(xiǎn)環(huán)境的正上方或正下方,且不宜設(shè)在有火災(zāi)危險(xiǎn)環(huán)境的正上方或正下方。9、不應(yīng)設(shè)在地勢低洼和可能積水的場所。2.3 變壓器的選擇2.3.1 變電所主變壓器臺(tái)數(shù)的選擇原則1、應(yīng)滿足用電負(fù)荷對供電可靠性的要求。對供有大量一、二級負(fù)荷的變電所,應(yīng)采用兩臺(tái)變壓器,以便當(dāng)一臺(tái)變壓器發(fā)生故障或檢修時(shí),另一臺(tái)變壓器能對一、二級負(fù)荷繼續(xù)供電。對只有二級而無一級負(fù)荷的變電所,也可以只采用一臺(tái)變壓器,但必須在低壓側(cè)敷設(shè)與其他變電所相聯(lián)的聯(lián)絡(luò)線作為備用電源,或另有自備電源。2、對季節(jié)性負(fù)荷或晝夜負(fù)荷變動(dòng)較大而宜于采用經(jīng)濟(jì)運(yùn)行方式的變電所,也可考慮采用兩臺(tái)變壓器。3、除上述兩種情況外,一般車間變電所宜采用一臺(tái)變壓器。但是負(fù)荷集中且容量相當(dāng)大的變電所,雖為三級負(fù)荷,也可以采用兩臺(tái)或多臺(tái)變壓器。4、在確定變電所主變壓器臺(tái)數(shù)時(shí),應(yīng)適當(dāng)考慮負(fù)荷的發(fā)展,留有一定的余地。2.3.2 變電所主變壓器容量的選擇1、主變壓器容量應(yīng)滿足全部用電設(shè)備總計(jì)算負(fù)荷的需要。2、車間變電所主變壓器的單臺(tái)容量,一般不宜大于1000kV·A(或1250kV·A) 。3、適當(dāng)考慮今后5~10年電力負(fù)荷的發(fā)展,留有一定余地。2.4 電氣主接線方案的選定電氣主接線是整個(gè)變電所電氣部分的主干。變電所電氣主接線指的是變電所中匯集、分配電能的電路,通常稱為變電所一次接線,是由變壓器、斷路器、隔離開關(guān)、互感器、母線、避雷器等電氣設(shè)備按一定順序連接而成的,是電力系統(tǒng)總體設(shè)計(jì)的重要組成部份。變電所主接線形式應(yīng)根據(jù)變電所在電力系統(tǒng)中的地位、作用、回路數(shù)、設(shè)黃 河 科 技 學(xué) 院 畢 業(yè) 設(shè) 計(jì) (文 獻(xiàn) 綜 述 ) 第 3 頁 備特點(diǎn)及負(fù)荷性質(zhì)等條件確定,并且應(yīng)滿足運(yùn)行可靠、簡單靈活、操作方便和節(jié)約投資等要求。主接線設(shè)計(jì)的基本要求為:(1)供電可靠性。發(fā)電廠和變電站是電力系統(tǒng)的重要組成部分,其主接線的可靠性應(yīng)與系統(tǒng)的要求相適應(yīng)。當(dāng)系統(tǒng)發(fā)生故障時(shí),要求停電范圍小,恢復(fù)供電快。(2)適應(yīng)性和靈活性。能適應(yīng)一定時(shí)期內(nèi)沒有預(yù)計(jì)到的負(fù)荷水平變化;改變運(yùn)行方式時(shí)操作方便,便于變電站的擴(kuò)建。(3)經(jīng)濟(jì)性。在確保供電可靠、滿足電能質(zhì)量的前提下,要盡量節(jié)省建設(shè)投資和運(yùn)行費(fèi)用,減少用地面積。(4)簡化主接線。復(fù)雜的主接線不利于倒閘操作,且容易造成誤操作,導(dǎo)致事故的發(fā)生。配網(wǎng)自動(dòng)化、變電站無人化是現(xiàn)代電網(wǎng)發(fā)展必然趨勢。簡化主接線為這一技術(shù)的全面實(shí)施,創(chuàng)造更為有利的條件。(5)設(shè)計(jì)標(biāo)準(zhǔn)化。同類型變電站采用相同的主接線形式,可使主接線規(guī)范化、標(biāo)準(zhǔn)化,有利于系統(tǒng)運(yùn)行和設(shè)備檢修。電氣主接線方案的選定對變電所電氣設(shè)備的選擇,現(xiàn)場布置,保護(hù)與控制所采取的方式,運(yùn)行的可靠性、靈活性、經(jīng)濟(jì)性,檢修、運(yùn)行維護(hù)的安全性等,都有直接的影響。因此,選擇優(yōu)化的電氣主接線方式,具有特別重要的意義。3 電氣設(shè)備的選擇3.1 導(dǎo)體和電器的選擇原則1、力求技術(shù)先進(jìn),安全適用,經(jīng)濟(jì)合理。2、滿足正常運(yùn)行,檢修,短路,過電壓情況下的要求,并考慮遠(yuǎn)景發(fā)展。3、應(yīng)按當(dāng)?shù)丨h(huán)境條件校準(zhǔn)。4、選擇的導(dǎo)體品種不宜過多。5、應(yīng)與整個(gè)工程建設(shè)標(biāo)準(zhǔn)協(xié)調(diào)一致。6、選用新產(chǎn)品應(yīng)積極慎重,新產(chǎn)品應(yīng)有可靠的試驗(yàn)數(shù)據(jù),并經(jīng)主管單位鑒定合格。3.2 隔離開關(guān)的配置1、中小型發(fā)電機(jī)出口一般應(yīng)裝設(shè)隔離開關(guān);容量為 220MW 及以上大機(jī)組與雙繞組變壓器為單元連接時(shí),其出口不裝設(shè)隔離開關(guān),但應(yīng)有可拆連接點(diǎn)。黃 河 科 技 學(xué) 院 畢 業(yè) 設(shè) 計(jì) (文 獻(xiàn) 綜 述 ) 第 4 頁 2、在出線上裝設(shè)電抗器的 6—10KV 配電裝置中,當(dāng)向不同用戶供電的兩回線共用一臺(tái)斷路器和一組電抗器時(shí),每回線上應(yīng)各裝設(shè)一組出線隔離開關(guān)。3、接在母線上的避雷器和電壓互感器宜合用一組隔離開關(guān)。4、中性點(diǎn)直接接地的普通變壓器中性點(diǎn)應(yīng)通過隔離開關(guān)接地,自藕變壓器中性點(diǎn)則不必裝設(shè)隔離開關(guān)。3.3 電壓互感器的配置1、電壓互感器的數(shù)量和配置與主接線方式有關(guān),并應(yīng)滿足測量、保護(hù)、同期和自動(dòng)裝置的要求。電壓互感器的配置應(yīng)能保證在運(yùn)行方式改變時(shí),保護(hù)裝置不得失壓,同期點(diǎn)的兩側(cè)都能提取到電壓。2、6-220KV 電壓等級的每一組主母線的三相上應(yīng)裝設(shè)電壓互感器。旁路母線上是否需要裝設(shè)電壓互感器,應(yīng)視各回出線外側(cè)裝設(shè)電壓互感器的情況和需要確定。3、當(dāng)需要監(jiān)視和檢測線路側(cè)有無電壓時(shí),出線側(cè)的一相上應(yīng)裝設(shè)電壓互感器。4、發(fā)電機(jī)出口一般裝設(shè)兩組電壓互感器。3.4 電流互感器的配置1、凡是裝設(shè)斷路器的回路均應(yīng)裝設(shè)電流互感器,其數(shù)量應(yīng)滿足測量、保護(hù)和自動(dòng)裝置的需要。2、在未設(shè)斷路器的下列地點(diǎn)也應(yīng)裝設(shè)電流互感器:發(fā)電機(jī)變壓器中性點(diǎn)、發(fā)電機(jī)和變壓器的出口、橋形接線的跨條上等。3、中性點(diǎn)直接接地系統(tǒng)一般按三相配置;非直接接地系統(tǒng)根據(jù)需要按兩相或三相配置。4、一臺(tái)半斷路器接線中,線路—線路串根據(jù)需要裝設(shè) 3-4 組電流互感器,線路—變壓器串,如果變壓器套管電流互感器可以利用時(shí),可裝設(shè)三組電流互感器。3.5 避雷器的裝置1、配電裝置的每組母線上應(yīng)裝設(shè)避雷器,但進(jìn)出線裝設(shè)避雷器時(shí)除外。2、旁路母線上是否裝設(shè)避雷器視其運(yùn)行時(shí)避雷器到被保護(hù)設(shè)備的電氣距離是否滿足要求而定。3、220KV 及以下變壓器到避雷器的電氣距離超過允許值時(shí),應(yīng)在變壓器附近增設(shè)一組避雷器。黃 河 科 技 學(xué) 院 畢 業(yè) 設(shè) 計(jì) (文 獻(xiàn) 綜 述 ) 第 5 頁 4、三繞組變壓器低壓側(cè)的一相上宜設(shè)置一臺(tái)避雷器。4 防雷和接地變電所的防雷設(shè)計(jì)應(yīng)做到設(shè)備先進(jìn)、保護(hù)動(dòng)作靈敏、安全可靠、維護(hù)試驗(yàn)方便,并在保證可靠性的前提下力求經(jīng)濟(jì)性。防止雷電直擊的主要電氣設(shè)備是避雷針,避雷針由接閃器和引下線、接地裝置三部分構(gòu)成。避雷針位置的確定,是變電所防雷設(shè)計(jì)的關(guān)鍵步驟。首先應(yīng)根據(jù)變電所電氣設(shè)備的總平面布置圖確定,避雷針的初步選定安裝位置與設(shè)備的電氣距離應(yīng)符合各種規(guī)程范圍的要求,初步確定避雷針的安裝位置后再根據(jù)公式進(jìn)行校驗(yàn),是否在保護(hù)范圍之內(nèi)。同時(shí)做好變電站的接地電網(wǎng),也可以有效的防止電力事故的發(fā)生。5 繼電保護(hù)在電力系統(tǒng)的運(yùn)行中,變電所可能出現(xiàn)各種故障和不正常運(yùn)行狀態(tài)。最常見同時(shí)也是最危險(xiǎn)的故障是各種類型的短路,其中包括相間短路和接地短路。此外,還可能發(fā)生輸電線路斷線,旋轉(zhuǎn)電機(jī)、變壓器同一繞組的匝間短路等。這樣供電系統(tǒng)就不能順利完成輸送電,此時(shí)繼電保護(hù)就很重要。繼電保護(hù)系統(tǒng)主要有保護(hù)作用、控制作用 、監(jiān)視作用 、事故分析與事故處理作用、自動(dòng)化作用。繼電保護(hù)裝置在電力系統(tǒng)中的主要作用是通過預(yù)防事故或縮小事故范圍來提高系統(tǒng)可靠性,是電力系統(tǒng)中重要的組成部分,是保證電力系統(tǒng)安全可靠運(yùn)行的重要技術(shù)措施之一。在現(xiàn)在的電力系統(tǒng)中,如果沒有繼電保護(hù)裝置,就無法維持系統(tǒng)正常運(yùn)行。6 結(jié)語電網(wǎng)運(yùn)行的最基本要求是安全與穩(wěn)定,電網(wǎng)安全穩(wěn)定的核心問題是要建立一個(gè)與該供電網(wǎng)絡(luò)相適應(yīng)的合理的電網(wǎng)結(jié)構(gòu)。變電所是電力系統(tǒng)中變換電壓、接受和分配電能、控制電力的流向和調(diào)整電壓的電力設(shè)施,通過其變壓器將各級電壓的電網(wǎng)聯(lián)系起來。建設(shè)變電站時(shí),在保證安全的前提下還要保證其經(jīng)濟(jì)性和靈活性。隨著電力人不斷的努力,變電站的設(shè)計(jì)一定會(huì)不斷完善的。黃 河 科 技 學(xué) 院 畢 業(yè) 設(shè) 計(jì) (文 獻(xiàn) 綜 述 ) 第 6 頁 參考文獻(xiàn)[1] 肖艷萍 . 發(fā)電廠變電站電氣設(shè)備. 中國電力出版社[2] 孟祥萍等 . 電力系統(tǒng)分析. 高等教育出版社[3] 常美生等 . 高電壓技術(shù). 高等教育出版社[4] 張保會(huì)等 . 電力系統(tǒng)繼電保護(hù). 中國電力出版社[5] 余建明 . 供電技術(shù). 機(jī)械工業(yè)出版社[6] 劉介才 . 工廠供電(第 5 版). 機(jī)械工業(yè)出版社 [7] 許珉等 . 發(fā)電廠電氣主系統(tǒng). 機(jī)械工業(yè)出版社 [8] 馬誌溪 . 電氣工程設(shè)計(jì). 機(jī)械工業(yè)出版社黃 河 科 技 學(xué) 院 畢 業(yè) 設(shè) 計(jì) (文 獻(xiàn) 翻 譯 ) 第 1 頁 變壓器1、介紹要從遠(yuǎn)端發(fā)電廠輸送電能,必須應(yīng)用高壓輸電。從某種意義上說這個(gè)高電壓必須降低,因?yàn)樗罱K是要提供給負(fù)載。變壓器能使電力系統(tǒng)各個(gè)部分運(yùn)行在不同的電壓等級。本文我們討論電力變壓器的原理和應(yīng)用。2、雙繞組變壓器變壓器最簡單的形式是兩個(gè)磁通相互耦合的固定線圈。兩個(gè)線圈之所以相互耦合,是因?yàn)樗鼈冞B接著共同的磁通。在電力應(yīng)用中,使用層式鐵芯變壓器(本文中提到的)。變壓器是高效率的,因?yàn)樗鼪]有旋轉(zhuǎn)損失,因此在電壓等級轉(zhuǎn)換的過程中,能量損失比較少。典型的效率范圍在92%到 99%,上限值適用于大功率電力變壓器。電流從交流電源流入的一側(cè)被稱為變壓器的一次側(cè)繞組或者是原邊。它在鐵圈中建立了磁通 φ,它的幅值和方向都會(huì)發(fā)生周期性的變化。磁通連接的第二個(gè)繞組被稱為變壓器的二次繞組或者是副邊。磁通是變化的,因此依據(jù)楞次定律,電磁感應(yīng)在二次側(cè)產(chǎn)生了電壓。變壓器在原邊接收電能的同時(shí)也在向副邊所帶的負(fù)荷輸送電能。這就是變壓器的作用。3、變壓器的工作原理當(dāng)二次側(cè)電路是開路的情況下,即使原邊被施以正弦電壓 vp,也是沒有能量轉(zhuǎn)移的。外加電壓在一次側(cè)繞組中產(chǎn)生一個(gè)小電流 Iθ。這個(gè)空載電流有兩項(xiàng)功能:(1)在鐵芯中產(chǎn)生電磁通,該磁通在零和 φm 之間做正弦變化, φm 是鐵芯磁通的最大值;?(2)它的一個(gè)分量說明了鐵芯中的渦流和磁滯損耗。這兩種相關(guān)的損耗被稱為鐵芯損耗。變壓器空載電流 Iθ一般大約只有滿載電流的 2%—5%。因?yàn)樵诳蛰d時(shí),原邊繞組中的鐵芯相當(dāng)于一個(gè)很大的電抗,空載電流的相位大約將滯后于原邊電壓相位 90o。顯然可見電流分量 Im= I0sinθ0,被稱做勵(lì)磁電流,它在相位上滯后于原邊電壓 VP 90o。就是這個(gè)分量在鐵芯中建立了磁通;因此磁通 φ 與 Im 同相。黃 河 科 技 學(xué) 院 畢 業(yè) 設(shè) 計(jì) (文 獻(xiàn) 翻 譯 ) 第 2 頁 第二個(gè)分量 Ie=I0sinθ0,與原邊電壓同相。這個(gè)電流分量向鐵芯提供用于損耗的電流。兩個(gè)相量的分量和代表空載電流,即I0 = Im+ Ie應(yīng)注意的是空載電流是畸變和非正弦形的。這種情況是非線性鐵芯材料造成的。如果假定變壓器中沒有其他的電能損耗,一次側(cè)的感應(yīng)電動(dòng)勢 Ep 和二次側(cè)的感應(yīng)電壓 Es 可以表示出來。因?yàn)橐淮卫@組中的磁通會(huì)通過二次繞組,依據(jù)法拉第電磁感應(yīng)定律,二次側(cè)繞組中將產(chǎn)生一個(gè)電動(dòng)勢 E,即 E=NΔφ/Δt。相同的磁通會(huì)通過原邊自身,產(chǎn)生一個(gè)電動(dòng)勢 Ep。正如前文中討論到的,所產(chǎn)生的電壓必定滯后于磁通 90o,因此,它于施加的電壓有 180o 的相位差。因?yàn)闆]有電流流過二次側(cè)繞組,E s=Vs。一次側(cè)空載電流很小,僅為滿載電流的百分之幾。因此原邊電壓很小,并且 Vp 的值近乎等于 Ep。原邊的電壓和它產(chǎn)生的磁通波形是正弦形的;因此產(chǎn)生電動(dòng)勢 Ep 和 Es 的值是做正弦變化的。產(chǎn)生電壓的平均值如下Eavg = turns× 給 定 時(shí) 間 內(nèi) 磁 通 變 化 量給 定 時(shí) 間即是法拉第定律在瞬時(shí)時(shí)間里的應(yīng)用。它遵循Eavg = N = 4fNφm21/()f?其中 N 是指線圈的匝數(shù)。從交流電原理可知,有效值是一個(gè)正弦波,其值為平均電壓的 1.11 倍;因此E = 4.44fNφm因?yàn)橐淮蝹?cè)繞組和二次側(cè)繞組的磁通相等,所以繞組中每匝的電壓也相同。因此Ep = 4.44fNpφm并且Es = 4.44fNsφm其中 Np 和 Es 是一次側(cè)繞組和二次側(cè)繞組的匝數(shù)。一次側(cè)和二次側(cè)電壓增長的比率稱做變比。用字母 a 來表示這個(gè)比率,如下式a = = psEsN假設(shè)變壓器輸出電能等于其輸入電能——這個(gè)假設(shè)適用于高效率的變壓器。實(shí)際上我們是考慮一臺(tái)理想狀態(tài)下的變壓器;這意味著它沒有任何損耗。因此黃 河 科 技 學(xué) 院 畢 業(yè) 設(shè) 計(jì) (文 獻(xiàn) 翻 譯 ) 第 3 頁 Pm = Pout或者VpIp × primary PF = VsIs × secondary PF這里 PF 代表功率因素。在上面公式中一次側(cè)和二次側(cè)的功率因素是相等的;因此VpIp = VsIs從上式我們可以得知= ≌ ≌ apsIpsE它表明端電壓比等于匝數(shù)比,換句話說,一次側(cè)和二次側(cè)電流比與匝數(shù)比成反比。匝數(shù)比可以衡量二次側(cè)電壓相對于一次側(cè)電壓是升高或者是降低。為了計(jì)算電壓,我們需要更多數(shù)據(jù)。終端電壓的比率變化有些根據(jù)負(fù)載和它的功率因素。實(shí)際上, 變比從標(biāo)識(shí)牌數(shù)據(jù)獲得, 列出在滿載情況下原邊和副邊電壓。當(dāng)副邊電壓 Vs 相對于原邊電壓減小時(shí),這個(gè)變壓器就叫做降壓變壓器。如果這個(gè)電壓是升高的,它就是一個(gè)升壓變壓器。在一個(gè)降壓變壓器中傳輸變比 a 遠(yuǎn)大于1(a>1.0),同樣的,一個(gè)升壓變壓器的變比小于 1(a<1.0)。當(dāng) a=1 時(shí),變壓器的二次側(cè)電壓就等于一次側(cè)電壓。這是一種特殊類型的變壓器,可被應(yīng)用于當(dāng)一次側(cè)和二次側(cè)需要相互絕緣以維持相同的電壓等級的狀況下。因此,我們把這種類型的變壓器稱為絕緣型變壓器。顯然,鐵芯中的電磁通形成了連接原邊和副邊的回路。在第四部分我們會(huì)了解到當(dāng)變壓器帶負(fù)荷運(yùn)行時(shí)一次側(cè)繞組電流是如何隨著二次側(cè)負(fù)荷電流變化而變化的。從電源側(cè)來看變壓器,其阻抗可認(rèn)為等于 Vp / Ip。從等式 = ≌ ≌ a 中psVsIpsE我們可知 Vp = aVs 并且 Ip = Is/a。根據(jù) Vs 和 Is,可得 Vp 和 Ip 的比例是= = pI/sa2sI但是 Vs / Is 負(fù)荷阻抗 ZL,因此我們可以這樣表示Zm (primary) = a2ZL這個(gè)等式表明二次側(cè)連接的阻抗折算到電源側(cè),其值為原來的 a2 倍。我們把這種折算方式稱為負(fù)載阻抗向一次側(cè)的折算。這個(gè)公式應(yīng)用于變壓器的阻抗匹配。黃 河 科 技 學(xué) 院 畢 業(yè) 設(shè) 計(jì) (文 獻(xiàn) 翻 譯 ) 第 4 頁 4、有載情況下的變壓器一次側(cè)電壓和二次側(cè)電壓有著相同的極性,一般習(xí)慣上用點(diǎn)記號表示。如果點(diǎn)號同在線圈的上端,就意味著它們的極性相同。因此當(dāng)二次側(cè)連接著一個(gè)負(fù)載時(shí),在瞬間就有一個(gè)負(fù)荷電流沿著這個(gè)方向產(chǎn)生。換句話說,極性的標(biāo)注可以表明當(dāng)電流流過兩側(cè)的線圈時(shí),線圈中的感應(yīng)電動(dòng)勢會(huì)增加。因?yàn)槎蝹?cè)電壓的大小取決于鐵芯磁通大小 φ0,所以很顯然當(dāng)正常情況下負(fù)載電勢 Es 沒有變化時(shí),二次側(cè)電壓也不會(huì)有明顯的變化。當(dāng)變壓器帶負(fù)荷運(yùn)行時(shí),將有電流 Is 流過二次側(cè),因?yàn)?Es 產(chǎn)生的感應(yīng)電動(dòng)勢相當(dāng)于一個(gè)電壓源。二次側(cè)電流產(chǎn)生的磁動(dòng)勢 NsIs 會(huì)產(chǎn)生一個(gè)勵(lì)磁。這個(gè)磁通的方向在任何一個(gè)時(shí)刻都和主磁通反向。當(dāng)然,這是楞次定律的體現(xiàn)。因此,N sIs 所產(chǎn)生的磁動(dòng)勢會(huì)使主磁通 φ0 減小。這意味著一次側(cè)線圈中的磁通減少,因而它的電壓 Ep 將會(huì)增大。感應(yīng)電壓的減小將使外施電壓和感應(yīng)電動(dòng)勢之間的差值更大,它將使初級線圈中流過更大的電流。初級線圈中的電流 Ip的增大,意味著前面所說明的兩個(gè)條件都滿足:(1)輸出功率將隨著輸出功率的增加而增加(2)初級線圈中的磁動(dòng)勢將增加,以此來抵消二次側(cè)中的感應(yīng)電動(dòng)勢減小磁通的趨勢??偟膩碚f,變壓器為了保持磁通是常數(shù),對磁通變化的響應(yīng)是瞬時(shí)的。更重要的是,在空載和滿載時(shí),主磁通 φ0 的降落是很少的(一般在 1 至 3%) 。其需要的條件是E 降落很多來使電流 Ip 增加。在一次側(cè),電流 Ip’在一次側(cè)流過以平衡 Is 產(chǎn)生的影響。它的磁動(dòng)勢 NpIp’只停留在一次側(cè)。因?yàn)殍F芯的磁通 φ0 保持不變,變壓器空載時(shí)空載電流 I0 必定會(huì)為其提供能量。故一次側(cè)電流 Ip 是電流 Ip’與 I0’的和。因?yàn)榭蛰d電流相對較小,那么一次側(cè)的安匝數(shù)與二次側(cè)的安匝數(shù)相等的假設(shè)是成立的。因?yàn)樵谶@種狀況下鐵芯的磁通是恒定的。因此我們?nèi)耘f可以認(rèn)定空載電流 I0 相對于滿載電流是極其小的。當(dāng)一個(gè)電流流過二次側(cè)繞組,它的磁動(dòng)勢(N sIs)將產(chǎn)生一個(gè)與二次側(cè)繞組 I0 產(chǎn)生的 φ0 磁通相獨(dú)立的磁通。因?yàn)檫@個(gè)磁通不通過一次側(cè)繞組,所以它不是一個(gè)互感磁通。黃 河 科 技 學(xué) 院 畢 業(yè) 設(shè) 計(jì) (文 獻(xiàn) 翻 譯 ) 第 5 頁 另外,流過一次側(cè)繞組的負(fù)載電流產(chǎn)生一個(gè)只和一次側(cè)繞組相交鏈的磁通,這個(gè)磁通被稱為一次側(cè)的漏磁量。二次側(cè)漏磁量產(chǎn)生的感應(yīng)電壓不能與一次側(cè)漏磁量所產(chǎn)生的感應(yīng)電壓相平衡。同樣的,一次側(cè)漏磁量產(chǎn)生的感應(yīng)電壓也與二次側(cè)所產(chǎn)生的不平衡。因此,這兩個(gè)感應(yīng)電壓作用表現(xiàn)為電壓降落,通常被稱為電抗壓降。另外,兩側(cè)繞組同樣具有電阻,這也將產(chǎn)生一個(gè)電阻壓降。把這些額外的電壓降也考慮在內(nèi),這樣一個(gè)實(shí)際變壓器的等效電路圖就完成了。需要注意,電路中的勵(lì)磁支路勵(lì)磁影響較小,在分析中我們可以將它忽略。這就符我們前面計(jì)算中可以忽略空載電流的假設(shè)。為達(dá)到精確度,這對進(jìn)一步合理預(yù)測變壓器性能是必須的。因?yàn)閴航蹬c負(fù)載電流成正比關(guān)系,這就意味著空載情況下一次側(cè)和二次側(cè)繞組沒有壓降。畢業(yè)設(shè)計(jì)文獻(xiàn)翻譯院 ( 系 ) 名 稱 工 學(xué) 院 機(jī) 械 系專 業(yè) 名 稱 機(jī) 械 設(shè) 計(jì) 制 造 及 其 自 動(dòng) 化學(xué) 生 姓 名 史 煒 指 導(dǎo) 教 師 穆 國 華 2012 年 03 月 10 日 黃河科技學(xué)院畢業(yè)設(shè)計(jì) ( 外文翻譯 ) 第 1 頁 TRANSFORMER 1. INTRODUCTION The high-voltage transmission is requied in the case that electrical power is to be provided at considerable distance from a generating station. At some point this high voltage must be reduced, because it ultimately is must supplied to a load. The transformer makes it possible for various parts of a power system to operate at different voltage levels. In this paper we discuss the principles and applications of power transformer. 2. TOW - WINDING TRANSFORMERS A simplest transformer consists of two stationary coils coupled by a mutual magnetic flux. The coils are said to be mutually coupled because they link a common flux. In power applications, laminated steel core transformers (to which this paper is restricted) are used. Transformers are efficient because the rotational losses normally associated with rotating machine are absent, so relatively little power is lost when transforming power from one voltage level to another. Typical efficiencies are in the range 92 to 99%, the higher values applying to the larger power transformers. The current flowing in the coil connected to the ac source is called the primary winding or simply the primary. It sets up the flux f in the core, which varies periodically both in magnitude and direction. The flux links the second coil, called the secondary winding or simply secondary. The flux is changing; therefore, it induces a voltage in the secondary by electromagnetic induction in accordance with Lenz’s law. Thus the primary receives its power from the source while the secondary supplies this power to the load. This action is known as transformer action. 黃河科技學(xué)院畢業(yè)設(shè)計(jì) ( 外文翻譯 ) 第 2 頁 3. TRANSFORMER PRINCIPLES When a sinusoidal voltage Vp is applied to the primary with the secondary open-circuited, there will be no energy transfer. The impressed voltage causes a small current I? to flow in the primary winding. This no-load current has two functions: (1) it produces the magnetic flux in the core, which varies sinusoidally between zero and ± fm, where f m is the maximum value of the core flux; and (2) it provides a component to account for the hysteresis and eddy current losses in the core. There combined losses are normally referred to as the core losses. The no-load current I? is usually few percent of the rated full-load current of the transformer (about 2 to 5%). Since at no-load the primary winding acts as a large reactance due to the iron core, the no-load current will lag the primary voltage by nearly 90o. It is readily seen that the current component Im= I0sin? 0, called the magnetizing current, is 90o in phase behind the primary voltage VP. It is this component that sets up the flux in the core; f is therefore in phase with Im. The second component, Ie=I0sin? 0, is in phase with the primary voltage. It is the current component that supplies the core losses. The phasor sum of these two components represents the no-load current, or I0 = Im+ Ie It should be noted that the no-load current is distortes and nonsinusoidal. This is the result of the nonlinear behavior of the core material. If it is assumed that there are no other losses in the transformer, the induced voltage In the primary, Ep and that in the secondary, Es can be shown. Since the magnetic flux set up by the primary winding, there will be an induced EMF E in the secondary winding in accordance with Faraday’s law, namely, E=N?f/?t. This same flux also links the primary itself, inducing in it an EMF, Ep. As discussed earlier, the induced voltage must lag the flux by 90o, therefore, they are 180o out of phase with the applied voltage. Since no current flows in the secondary winding, Es=Vs. The no-load primary current I0 is small, a few percent of full-load current. Thus the voltage in the primary is small and Vp is nearly equal to Ep. The primary voltage and the resulting flux are sinusoidal; thus the induced quantities Ep and Es vary as a sine function. 黃河科技學(xué)院畢業(yè)設(shè)計(jì) ( 外文翻譯 ) 第 3 頁 The average value of the induced voltage given by Eavg = turns× changeinfluxinagiventimegiventime which is Faraday’s law applied to a finite time interval. It follows that Eavg = N 21/(2)mfj = 4fNf m which N is the number of turns on the winding. Form ac circuit theory, the effective or root-mean-square (rms) voltage for a sine wave is 1.11 times the average voltage; thus E = 4.44fNf m Since the same flux links with the primary and secondary windings, the voltage per turn in each winding is the same. Hence Ep = 4.44fN pf m and Es = 4.44fN sf m where Ep and Es are the number of turn on the primary and secondary windings, respectively. The ratio of primary to secondary induced voltage is called the transformation ratio. Denoting this ratio by a, it is seen that a = psEE = psNN Assume that the output power of a transformer equals its input power, not a bad sumption in practice considering the high efficiencies. What we really are saying is that we are dealing with an ideal transformer; that is, it has no losses. Thus Pm = Pout or VpIp × primary PF = VsIs × secondary PF where PF is the power factor. For the above-stated assumption it means that the power factor on primary and secondary sides are equal; therefore VpIp = VsIs from which is obtained 黃河科技學(xué)院畢業(yè)設(shè)計(jì) ( 外文翻譯 ) 第 4 頁 psVV = psII ≌ psEE ≌ a It shows that as an approximation the terminal voltage ratio equals the turns ratio. The primary and secondary current, on the other hand, are inversely related to the turns ratio. The turns ratio gives a measure of how much the secondary voltage is raised or lowered in relation to the primary voltage. To calculate the voltage regulation, we need more information. The ratio of the terminal voltage varies somewhat depending on the load and its power factor. In practice, the transformation ratio is obtained from the nameplate data, which list the primary and secondary voltage under full-load condition. When the secondary voltage Vs is reduced compared to the primary voltage, the transformation is said to be a step-down transformer: conversely, if this voltage is raised, it is called a step-up transformer. In a step-down transformer the transformation ratio a is greater than unity (a>1.0), while for a step-up transformer it is smaller than unity (a<1.0). In the event that a=1, the transformer secondary voltage equa ls the primary voltage. This is a special type of transformer used in instances where electrical isolation is required between the primary and secondary circuit while maintaining the same voltage level. Therefore, this transformer is generally knows as an isolation transformer. As is apparent, it is the magnetic flux in the core that forms the connecting link between primary and secondary circuit. In section 4 it is shown how the primary winding current adjusts itself to the secondary load current when the transformer supplies a load. Looking into the transformer terminals from the source, an impedance is seen which by definition equals Vp / Ip. From psVV = psII ≌ psEE ≌ a , we have Vp = aVs and Ip = Is/a.In terms of Vs and Is the ratio of Vp to Ip is ppVI = /ssaVIa = 2 ssaVI But Vs / Is is the load impedance ZL thus we can say that Zm (primary) = a2ZL This equation tells us that when an impedance is connected to the secondary side, it appears from the source as an impedance having a magnitude that is a2 times its actual value. We say 黃河科技學(xué)院畢業(yè)設(shè)計(jì) ( 外文翻譯 ) 第 5 頁 that the load impedance is reflected or referred to the primary. It is this property of transformers that is used in impedance-matching applications. 4. TRANSFORMERS UNDER LOAD The primary and secondary voltages shown have similar polarities, as indicated by the “dot-making” convention. The dots near the upper ends of the windings have the same meaning as in circuit theory; the marked terminals have the same polarity. Thus when a load is connected to the secondary, the instantaneous load current is in the direction shown. In other words, the polarity markings signify that when positive current enters both windings at the marked terminals, the MMFs of the two windings add. Since the secondary voltage depends on the core flux f 0, it must be clear that the flux should not change appreciably if Es is to remain essentially constant under normal loading conditions. With the load connected, a current Is will flow in the secondary circuit, because the induced EMF Es will act as a voltage source. The secondary current produces an MMF NsIs that creates a flux. This flux has such a direction that at any instant in time it opposes the main flux that created it in the first place. Of course, this is Lenz’s law in action. Thus the MMF represented by NsIs tends to reduce the core flux f 0. This means that the flux linking the primary winding reduces and consequently the primary induced voltage Ep, This reduction in induced voltage causes a greater difference between the impressed voltage and the counter induced EMF, thereby allowing more current to flow in the primary. The fact that primary current Ip increases means that the two conditions stated earlier are fulfilled: (1) the power input increases to match the power output, and (2) the primary MMF increases to offset the tendency of the secondary MMF to reduce the flux. In general, it will be found that the transformer reacts almost instantaneously to keep the resultant core flux essentially constant. Moreover, the core flux f 0 drops very slightly between no load and full load (about 1 to 3%), a necessary condition if Ep is to fall sufficiently to allow an increase in Ip. On the primary side, Ip’ is the current that flows in the primary to balance the demagnetizing effect of Is. Its MMF NpIp’ sets up a flux linking the primary only. Since the 黃河科技學(xué)院畢業(yè)設(shè)計(jì) ( 外文翻譯 ) 第 6 頁 core flux f 0 remains constant. I0 must be the same current that energizes the transformer at no load. The primary current Ip is therefore the sum of the current Ip’ and I0. Because the no-load current is relatively small, it is correct to assume that the primary ampere-turns equal the secondary ampere-turns, since it is under this condition that the core flux is essentially constant. Thus we will assume that I0 is negligible, as it is only a small component of the full-load current. When a current flows in the secondary winding, the resulting MMF (NsIs) creates a separate flux, apart from the flux f 0 produced by I0, which links the secondary winding only. This flux does no link with the primary winding and is therefore not a mutual flux. In addition, the load current that flows through the primary winding creates a flux that links with the primary winding only; it is called the primary leakage flux. The secondary- leakage flux gives rise to an induced voltage that is not counter balanced by an equivalent induced voltage in the primary. Similarly, the voltage induced in the primary is not counterbalanced in the secondary winding. Consequently, these two induced voltages behave like voltage drops, generally called leakage reactance voltage drops. Furthermore, each winding has some resistance, which produces a resistive voltage drop. When taken into account, these additional voltage drops would complete the equivalent circuit diagram of a practical transformer. Note that the magnetizing branch is shown in this circuit, which for our purposes will be disregarded. This follows our earlier assumption that the no-load current is assumed negligible in our calculations. This is further justified that it is rarely necessary to predict transformer performance to such accuracies. Since the voltage drops are all directly proportional to the load current, it means that at no-load conditions there will be no voltage drops in either winding.
收藏