【溫馨提示】 dwg后綴的文件為CAD圖,可編輯,無水印,高清圖,,壓縮包內文檔可直接點開預覽,需要原稿請自助充值下載,請見壓縮包內的文件及預覽,所見才能所得,請細心查看有疑問可以咨詢QQ:414951605或1304139763
南昌航空大學科技學院外文翻譯
關于離心流化床烘干機熱量與質量傳遞的試驗研究
M.H.Shi,H.Wang,Y.L.Hao
中國南京東南大學電力工程系 210096
摘要
我們正在做一項熱量和質量傳遞特性的試驗研究,就是前兩天潮濕的物質在離心流化床(CFB)烘干機的干燥過程。每分鐘轉數要300到500之間。測試材料有濕的沙,玻璃粉和切成片的食物。入口和出口的氣體溫度和濕球溫度,以及床的溫度都被測出。通過質量平衡法,在氣體階段立即決定了水分含量。可以測出表面氣流速度、顆粒直徑和形狀、床的厚度、床的轉數以及干燥特性最初的溫度的影響。我們獲得了一個經驗系數,可以用來計算在離心流化干燥器內氣體顆粒的熱量傳遞系數。
關鍵詞:干燥;熱量和質量傳遞;離心流化床
1. 引言
CFB干燥是一項新技術,潮濕的材料要離心力范圍內通過機床的旋轉來完成一個被高度提高的熱量和質量傳遞。這種機床本質上是一個圍繞對稱軸旋轉的圓柱形籃子,上面有一個能滲水的圓柱形墻體。干燥物進入籃子,因為旋轉產生的強大的離心力,它們被迫在籃子周圍形成一個環(huán)形層。氣體通過能滲水的圓柱墻注入,當力量通過流化介質平衡了離心力,機床開始流化。不像垂直機床一樣有一個固定的引力力場,離心床的體積力成為一個可調節(jié)的參數,這個參數由旋轉速度和籃子的半徑決定。原則上,在任何氣體流速情況下,通過改變機床旋轉速度都能達到最小流化作用。用一個比引力還大得多的強離心力場,機床可以經得起一個大的流速,而不形成大的氣泡。因此,在高氣體流速下氣體-液體的聯系得到了改進,并且在干燥過程中能達到熱量和質量傳遞。因為這個原因,CFB干燥器在干燥業(yè)得到頗多關注。
文獻中只能找到一些研究CFB干燥的調查著作。拉扎爾和法卡斯[1,2]布朗[3]執(zhí)行了CFB切片水果和蔬菜的干燥過程,卡爾森[4]調查了CFB大米干燥情況。這些調查報告都非常的有益,但它們主要關注的是工業(yè)申請CFB的可能性。CFB的流動行為和干燥特性是非常復雜的,并且仍然不是很清楚。為了評估物體表面溫度,從氣體到物體的熱量傳遞知道是標非常有必要的。為了特定的目的,定量的CFBs熱量傳遞特性的知識是必須的。
在這篇論文中,做了一個關于流動行為和CFB的氣體-液體的熱量和質量傳遞特性的試驗,影響干燥過程的主要因素被檢測和討論。
2. 實驗裝置
圖1為實驗裝置示意表。一個圍繞水平軸的圓柱形籃子安裝在一個密封的圓柱形盒子內。籃子直徑為200mm,寬度為80mm?;@子的側面有直徑為3mm的洞,用來分散氣體,有22.7%的開放區(qū)域。
圖1.實驗裝置
內表覆有200個不銹鋼絲網,用來防止機床材料腐蝕。在籃子末端墻體的中心處有一個直徑為80mm的洞,用來排出氣體。一個變速發(fā)動機被用來轉動籃子,通過一個軸來連接籃子墻體的另一端。用一個LZ-45轉速計來測量發(fā)動機的轉速??諝庥梢粋€鼓風機吹入。空氣質量流率的測量采用孔板流量計??諝饧訜崾褂玫氖且粋€電熱器。一個t形管閥是用來控制流體方向??諝鉁囟确€(wěn)定在期望值(約100℃)后,打開球上的閥門,干燥實驗便開始了;熱空氣流經分散器到達機床后進入大氣層。壓降是通過一個U形量表來測量的。一個壓力探針沿著中心線伸到籃筐里,離端壁10毫米遠。在相同的操作條件下,也進行了不使用機床材料來獲取穿過分散器的壓力差異的試驗。穿過機床的壓降通過ΔpBed =Δ pTotal ? Δp分散器來測量。入口氣體溫度、出口氣體溫度和在不同位置的床溫度隨時間變化是使用熱電偶探頭來測量的,數據記錄是采用3497A記錄數據采集/控制單元。在干燥過程中測試材料的含水量是通過在氣體階段的水分平衡法來測量,即通過測量在氣體階段用干濕燈泡溫度計來入口與出口處的濕潤度。
圖2.離心流化床的一個特別部分
時間間隔從tj到tjC1的水分平衡是 (公式1)。在時間tj+1,測試材料的水含量是 (公式2)。采用干燥重量法測試材料樣品達到初始含水率,我們能得到隨著時間的含水率的變化,因而,干燥率計算為 (公式3). 干燥的表面Sp作為測試材料全部表面積為(公式4)。忽略射線熱傳導和周圍的熱損失,如圖2所示,不同體積時, 在任何給定的時間機床的能量等式是這樣的:(公式5)。該方程可以使用在整個機床來獲得傳熱系數:(公式6)
3.結果與討論
3.1.機床的壓降與初始流化特性
圖3顯示機床壓降的變化,沙床表面氣流速度,在干燥測試中不同的旋轉速度,在初始流化階段,壓降增大均隨著流速。
圖3.CFB沙子的流化曲線 (dpD0.245 mm, nD400rpm).材料 (上/下): (m/h) 沙; (d/s) 玻璃珠
當到達臨界點時,壓降將保持幾乎不變。但是,切片,觀察成塊的材料所得的結果不同。壓降曲線有一個最大值,它對應的臨界液化點,如圖4。在初始流化階段,慢慢增大壓力降的增加與流速。當達到臨界點,壓降隨著氣速的增加而下降。這是因為在離心力場內,切片材料的自鎖現象逐漸減弱,并且因為機床變得統(tǒng)一。這造成了一個流阻。降低機床轉速可以降低機床壓降和臨界氣速,如圖4。
這是由于減在了床上旋轉速度就會削弱離心力場和導致流動阻力減少。它也可以從圖4看出來:切片土豆的臨界流化速度要小于塊狀土豆,是由于片狀材料更大地觸風面積。
圖4.不同形狀材料的流化曲線(切片土豆10mm_10mm_1.5 mm, nD300 rpm; (h) 塊狀土豆5mm_5mm_5 mm, nD300 rpm; (s)塊狀土豆5mm_5mm_5 mm, nD250 rpm.
3.2.干燥曲線
典型的氣體溫度和機床層溫度曲線和濕沙的干燥曲線的在間歇干燥過程中顯示如圖5。
圖5.CFB間歇干燥曲線(sand,dpD0.411mm,MD2.48kg, !D41.9rads?1,U0D1.71ms?1,HinD0.016kg kg?1): (1) Tg;in ; (2) Tg;out ;(3) Tb; (4) R; (5) x.
并且,片狀材料機床的壓降也小于塊狀物料機床,是因為碎片材料在CFB有更好的流化特性。這從理論性顆粒物質模型[6]是獲得的初始流化關系并不適合切片材料。不同形狀切片材料的初始流化條件是試驗性的,單獨決定的。
圖6片狀土豆的水份含量變化(曲線6)和干燥率(曲線7)
這也顯示出像沙子這種干燥材料的特點,其中水分含量主要是表面的水分, 就像在一個普通的干燥機,整個干燥過程即可分為三個階段。在一個簡短的初期階段,材料預熱和干燥速度迅速增加; 機床溫度增加到一個穩(wěn)定值。第二階段是干燥速率恒定階段,從氣體到材料的熱量轉移完全為材料表面水分的蒸發(fā)。材料溫度保持不變,干燥速率也不變。最后一個階段被稱為降速階段,材料的溫度和干燥速率也逐漸增加,直到干燥過程的最后。
CFB片狀食品產品的干燥行為與圖6所示的沙子又有些不同。顯然,CFB切片土豆的干燥特性與在傳統(tǒng)的干燥過程基本相似。在一開始,有一個短暫的最初階段。在這一時期,機床材料預先加熱;機床溫度迅速達到一個穩(wěn)定值,干燥速率快速增加。這個初步的時期之后是一個干燥速率穩(wěn)定階段。在恒定的速率期,測試材料的表面覆蓋著一層很薄的水膜。氣體流動至材料的熱轉移用來完全蒸發(fā)水分,所以切片材料的溫度保持平衡,溫度和干燥速度是在最大值。這是很重要的,土豆的主要的水分含量是細胞水分,所以恒定的速率時期是很短暫的。最重要的干燥過程是在降速時期完成的。在降速時期,表面附近的干燥層出現并由于內部水分外流的運輸阻力更大而逐漸減弱。這導致熱傳遞阻力增加,干燥速率在第一階段迅速降低。干層后的溫度已上升到一定的值,干燥速率慢慢的減少。這表明,在該降速時期,切片土豆在循環(huán)流化床干燥機可以分開成兩個不同的階段。這對工程設計與操作都至關重要。實驗結果表明, 干燥過程中切片土豆比塊狀土豆有一個更大的干燥速率和較短的干燥時間。這是因為在切片材料中從內細胞到外蒸發(fā)表面的水分運輸距離比在塊狀材料中要短。特別值得一提的是,在干燥過程中,在第二階段的降速時期片狀材料更短。
一般來說,由于薄片材料可能被流態(tài)化和混合得很好,干燥時間極短。例如,CFB切片土豆的干燥時間比隧道式干燥機短15倍,比常規(guī)流化干燥器短5倍。
3.3.操作參數的影響
3.3.1表面氣體流速
很明顯,表面流速的增加將增加流化的程度,因此,氣體階段與固體階段之間的熱量與質量傳遞可能會大幅提高。這導致了干燥速度更大和干燥時間短,是,如圖7。這臨界水分含量會隨氣流速度增加而增加,如圖7虛線所示。對于食品原料,實驗結果表明,在穩(wěn)定速度時期和在第一時期,干燥速度會隨著在低氣流速度區(qū)域的氣體流速的增加而增加。因此,總干燥時間會減少。然而,當流速增加到一定值,恒定的速率會消失,降速時期的第一階段減短而第二階段增長。 .
圖7表觀氣速對水分含量的影響
(dpD0.411 mm, MD2.50 kg, !D41.9 rad s?1, HinD0.016 kg kg?1): (1)
U0D1.66ms?1; (2) U0D2.17ms?1.
M.H. Shi et al. / 化工雜志 78 (2000) 107–113 111
總干燥時間就會保持不變;這是因為馬鈴薯的主要水含量是內層細胞水和主要的干燥過程是在降速時期的第二階段。增加進口燃氣溫度,所有的干燥速率和干燥周期總數增加,干燥時間就減少。然而,燃氣溫度的增加會受制于干燥食物的質量。我們的測試中,最好的入口氣體溫度大約是100-110℃。實驗結果也表明, 在相同的操作條件下,固定尺寸的切片蘿卜的干燥速率比切片土豆的更大。這是因為微觀組織的測試實例表明,蘿卜比土豆有一個更大的帶有一種更加規(guī)則性排列細胞結構,而且,蘿卜細胞里液體的粘性更??;這些結構特點讓蘿卜容易干燥。
3.3.2.旋轉速度
相同的氣速,降低床上旋轉速度將會減少離心力作用于物質的流態(tài)化程度,而提高材料的流化程度;這導致氣體階段和固體階段之間的熱量和質量傳遞會增加。因此,當減少機床的旋轉速度,干燥速度增加了,如圖8。并且整個機床的干燥過程會比較均勻。這意味著,對于CFB一個給定的材料干燥,機床轉速應盡量放低,直到流化狀態(tài)可能就不能維持。當通過提高在CFB干燥器內的氣體速度來增強干燥過程, 同時,必須增加速度,避免干燥材料從機床上吹出去。在理論上,通過限制CFB機床的旋轉速度,在任何氣體流速下機床操作都能是最佳流化狀態(tài)。
圖8.旋轉速度的影響 (dpD0.411 mm, MD2.41 kg, U0D
1.43ms?1, HinD0.0123 kg kg?1): (1) !D52.4 rad s?1; (2) !D41.9 rad s?1.
圖 9. 粒子直徑的影響 (MD2.4 kg, !D41.9 rad s?1, U0D
1.43ms?1, HinD0.0123 kg kg?1): (1) dpD0.245 mm; (2) dpD0.411 mm.
3.3.3.粒子直徑
圖9顯示了CFB下粒子直徑對干燥行為的影響。顯而易見的是,對于走直徑更大的粒子,由于氣體和固體顆粒之間更大的下滑速度,干燥過程中的熱量與質量傳遞將會增強。 因此,CFB干燥速率會隨著粒子直徑的增加而增加,如圖9所示。然而,隨著增加物質維度,內部傳熱傳質阻力會增加,因此,對于一個給定的干燥材料,在特定操作條件下,那對于決定干燥過程中最佳材料規(guī)模是非常重要的。
3.3.4.機床厚度
圖10顯示初始床厚度的影響上干燥工藝??梢钥闯?以提高料層厚度,干燥速率會減少,這是因為氣體階段和固體階段之間的熱量與質量傳遞的驅動力在陜窄的機床條件下更大。
圖 10. 機床厚度的影響 (dpD0.411 mm, !D41.9 rad s?1,
U0D1.43ms?1, HinD0.0123 kg kg?1): (1) L0D30 mm; (2) L0D20 mm.
112 M.H. Shi et al. / 化工雜志78 (2000) 107–113
圖 11.初始水分含量(dpD0.411 mm, MD2.48 kg, !D41.9
rad s?1, U0D1.71ms?1, HinD0.016 kg kg?1): (1) x0D0.221 kg kg?1; (2)
x0D0.0574 kg kg?1.
3.3.5.初始水分含量的影響
很明顯,初始水分含量越大的材料干燥時間更長 (圖11),但是干燥特性都是相同的。唯一的區(qū)別在于恒定速率階段的持續(xù)時間。
3.4.熱量傳遞關聯性
65%的實驗操作都是通過濕沙和玻璃珠進行的,機床高度固定為10-30mm之間,雷諾系數從5.47到35.3以及離心力這重力的10.08到28倍。熱量傳遞系數被轉換成努塞系數,看作是平均溫度下的平均直徑和熱電導率。使用迴歸分析的程式,獲得了在干燥過程中的CFB氣體與粒子間熱量傳遞的無量綱關聯。擴散系數的指數比(Prandtl號碼)已被假設為1 / 3;
圖12.試驗結果與計算結果的比較
(公式7)
因此,合適的參數范圍內對上述二者的相互關系是,FcD10.0-28.0 ReD5.0-42.0。 努塞爾系數定義為NuDhdp /λ;雷諾數為ReDρgU0dp / μ;普朗特數是PrDCpgμ/λ; 然后,無量綱的離心力被定義為Fc=ro ω2/g。圖12顯示的是試驗的熱量傳遞與公式7的計量值比較。這項工作測試得到的所有數據偏差在25%以內。
4. 結語
1.CFB可能可以在填充床上操作,剛剛出現的流化或流化機床在給定的流速下,通過使用一個強流率的離心力場,可以維持穩(wěn)定的流化狀態(tài)。
2.CFB分散器附近沒有明顯的“活躍區(qū)域”。在表觀氣速、粒子直徑、粒子形狀因子、、粒子密度、機床厚度和機床轉速的影響下,氣體與團體之間的熱傳遞產生。
3.CFB干燥器中,干燥過程可以分為三個階段,干燥速度隨著表觀氣速和顆粒直徑的增加及旋轉速度和初始機床厚度的減少而增加,
4.在CFB中切片食品產品能夠流化和混合和非常好。壓降曲線有一個最大值,臨界流化參數隨著干燥產品及材料本身形狀和大小的變化及操作條件的變化而變化。
5.切片食品產品可以干得很好很快。干燥的主要過程是在降速期間,干燥速率速率取決于干燥產口的材料、形狀、和尺寸以及操作條件。
5.術語
a 顆粒表面每單位體積
Cpg,Cps 氣體或固體的比熱容
Dp 平均粒子直徑
DAB 分子擴散性
Fc 無量鋼的離心力,
G 氣體質量流率
h 熱傳系數
H 機床寬度;氣體可濕性
Lo 固定床厚度
M 干燥材料的重量
n 機床轉速(每分鐘轉速)
Nu 努塞爾數,hdp/
△P 壓降(kpa)
Pr 普朗特系數,
R 干燥速率
Re 雷諾系數
T 溫度
U0 表面氣體流速
x 水分含量
希臘字母
ε 多孔性
λ 導電性
μ 氣體粘度
υ 氣體運動粘度
氣體或固體密度
球形
ω 角速度
致謝
本項目由中國國家自然科學基金會支持。
參考文獻
[1] M.E. Lazar, D.F. Farkas, The centrifugal fluidized bed. 2. Drying studies on piece form foods, J. Food Sci. 36 (1971) 315–319.
[2] M.E. Lazar, D.F. Farkas, J. Food Sci. 44 (1979) 242–246.
[3] G.E. Brown, D.F. Farkas, Centrifugal fluidized bed, Food Technol. 26 (12) (1972) 23–30.
[4] R.A. Carlson, R.L. Roberts, D.F. Farkas, Preparation of quick cooking rice products using a centrifugal fluidized bed, J. Food Sci. 41 (1976) 1177–1179.
[5] D.F. Hanni, D.F. Farkas, G.E. Brown, Design and operating parameters for a continuous centrifugal fluidized bed drier, J. Food Sci. 41 (1976) 1172–1176.
[6] C.I. Metcalfe, J.R. Howard, Fluidization, Cambridge University Press, Cambridge, 1978, pp. 276–327.
13
畢業(yè)設計(論文)外文翻譯
題目 關于離心流化床烘干機熱量與質量傳遞的試驗研究
專 業(yè) 名 稱 機械設計制造及其自動化
班 級 學 號 088105403
學 生 姓 名 陳強華
指 導 教 師 張緒坤
填 表 日 期 2012 年 4 月 2 日
南昌航空大學科技學院學士學位論文
雙軸無重力粉體混合機混合單元的設計
學生姓名:陳強華 班級:088105403
指導老師:張緒坤
摘要:混合可以使兩種或多種不同的物質在彼此之中互相分散,從而達到均勻混合;也可以加速傳熱和傳質過程。在工業(yè)生產中,混合操作是從化學工業(yè)開始的,圍繞食品、纖維、造紙、石油、水處理等,作為工藝過程的一部分而被廣泛應用。在工業(yè)生產中,大多數的混合操作均系機械混合,以中、低壓立式鋼制容器的混合設備為主?;旌显O備主要由混合裝置、軸封和混合罐三大部分組成。
本設計的課題是雙軸無重力粉塵混合機主要涉及反應混合機的混合單元的設計,主要包括混合罐、電動機及減速器的選型、支撐裝置設計、軸的密封設置的設計。
關鍵詞:混合機 雙軸無重力 混合單元 機械設計
指導老師簽名:
畢業(yè)設計(論文)任務書
I、畢業(yè)設計(論文)題目:
雙軸無重力粉體混合機混合單元的設計
II、畢 業(yè)設計(論文)使用的原始資料(數據)及設計技術要求:
1、生產率:5噸/時;
2、裝機容量:11千瓦;
3、分批混合:500kg/批;
4、產品質量:混合均勻度變異系數cv≤5%;
5、能耗:耗電≤5kWh/t;
III、畢 業(yè)設計(論文)工作內容及完成時間:
1.查閱資料,英文資料翻譯 (2周)3月24日~4月8日
2.撰寫開題報告 (1周)4月9日~4月13日
3.設計并繪制混合機混合單元裝配圖 確 (4.5周)4月14日~5月16日
4.繪制主要零件圖若干張 (2.5周)5月17日~6月3日)
5.編寫設計計算說明書(畢業(yè)論文)一份 (2周)6月4日~6月17日
6.畢業(yè)設計審查、畢業(yè)答辯 (1周)6月18日~ 6月27日
Ⅳ 、主 要參考資料:
[1] 璞良貴,紀名剛主編.機械設計.第七版.北京:高等教育出版社,2001
[2] 金國淼等.攪拌設備(化工設備設計全書). 北京: 化學工業(yè)出版社,2002
[3] 徐灝主編,機械設計手冊.北京:機械工業(yè)出版社,1995.12
[4] 李克永.化工機械手冊. 天津: 天津大學出版社,1991.5
[5] Bathala C. Redlaty, V. S. Muvthy, Madaboosi S. Ananth, Chamarti D. P. Rao. Modeling of continuous Fertilizer Cranulation process for control. Part. Part. Syst. Charact 15(1998):156-160
機械與材料工程 系 機械設計制造及其自動化 專業(yè)類 0881054 班
學生(簽名): 陳強華
日期: 自 2012 年 3 月 2 日至 2012 年 6 月 23 日
指導教師(簽名): 張緒坤
助理指導教師(并指出所負責的部分):
系(室)主任(簽名):
附注:任務書應該附在已完成的畢業(yè)設計說明書首頁。
南昌航空大學科技學院學士學位論文
學士學位論文原創(chuàng)性聲明
本人聲明,所呈交的論文是本人在導師的指導下獨立完成的研究成果。除了文中特別加以標注引用的內容外,本論文不包含法律意義上已屬于他人的任何形式的研究成果,也不包含本人已用于其他學位申請的論文或成果。對本文的研究作出重要貢獻的個人和集體,均已在文中以明確方式表明。本人完全意識到本聲明的法律后果由本人承擔。
作者簽名: 日期:
學位論文版權使用授權書
本學位論文作者完全了解學校有關保留、使用學位論文的規(guī)定,同意學校保留并向國家有關部門或機構送交論文的復印件和電子版,允許論文被查閱和借閱。本人授權南昌航空大學科技學院可以將本論文的全部或部分內容編入有關數據庫進行檢索,可以采用影印、縮印或掃描等復制手段保存和匯編本學位論文。
作者簽名: 日期:
導師簽名: 日期:
畢業(yè)設計(論文)開題報告
題目雙軸無重力粉體混合機混合單元的設計
專 業(yè) 名 稱 機械設計制造及其自動化
班 級 學 號 088105403
學 生 姓 名 陳強華
指 導 教 師 張緒坤
填 表 日 期 2012 年 4 月 10 日
1、 選題的依據及意義:
本課題符合本專業(yè)貫徹因材施教的原則的培養(yǎng)目標及教學基本要求;課題結合了生產科研和實驗室的建設任務;課題的類型可能多種多樣;在保證教學基本要求的前提下,使畢業(yè)設計在教學計劃的時間內經過努力能夠完成。
混合可以使兩種或多種不同的物質在彼此之中互相分散,從而達到均勻混合;也可以加速傳熱和傳質過程。在工業(yè)生產中,混合操作時從化學工業(yè)開始的,圍繞食品、纖維、造紙、石油、水處理等,作為工藝過程的一部分而被廣泛應用。隨著計算機技術的高速發(fā)展,CAD(計算機輔助設計)與CAE(計算機輔助分析)得到了廣泛的應用,因此,對混合機設計并進行簡單的分析能夠為今后的工作積累一些經驗,以便畢業(yè)后能很快適應現代化的工作環(huán)境;通過運用四年來學過的專業(yè)知識,使用現代化的設計手段,檢索國內外資料,使自己的專業(yè)綜合能力得到提高,以適應以后工作崗位的要求;通過與同學探討,請教指導老師提高了溝通能力。
2、 國內外研究概況及發(fā)展趨勢(含文獻綜述):
研究概況:目前國內混合機,均向著混合精度高、速度快、殘留量小、低耗高效、系列化和適用范圍廣等方向研制和發(fā)展,其中以雙軸無重力臥式混合機的發(fā)展為迅速。國內各企業(yè)、科研部門所研制的臥式雙軸無重力混合機機型結構基本相同。國外的雙軸無重力混合機在20世紀80年代末已經開始研制,挪威Forberg公司在上 20 世紀 90 年代初推出了雙軸無重力系列混合機[8],其有效容積 25 至 5000,結構特點、混合機理、傳動方式與國內雙軸槳葉式混合機基本相同。目前國外流行的翻轉雙軸無重力混合噴涂機是在普通雙軸槳葉無重力式混合機基礎之上研制而成的。但需要增加一系列的液體噴涂和真空管道以及一套機體翻轉及傳動機構,結構略顯復雜。
發(fā)展趨勢:混合是現代工業(yè)不可缺少的生產工藝,隨著中國工業(yè)的不斷發(fā)展,混合系統(tǒng)及混合設備的發(fā)展將越來越強大?;旌细采w著整個工業(yè)領域,如化工、食品、建材、藥品、化肥,我們每天每時使用的產品在生產中至少有一步混合工藝。無重力混合機廣泛用于化工、化妝品、洗滌劑、農藥、染料、食品、釀造、飼料、建材、陶瓷、涂料、樹脂等物料的混合。無重力混合機具有混合時間短、混合均度高等特點。其屬于新型高效類混合設備,性能遠比常規(guī)的雙螺旋環(huán)帶混合機優(yōu)越。而快速無殘留雙軸無重力混合機也將為國內物料機械的進步掀開新的一頁。
三、研究內容及實驗方案:
研究內容:本設計的課題是雙軸無重力粉塵混合機主要涉及反應混合機的混合單元的設計,主要包括混合罐、電動機及減速器的選型、支撐裝置設計、軸的密封設置的設計。
實驗方案:(1).結構尺寸的確定;
(2).混合機大小的確定及轉速和功率的計算;
(3).由混合機功率來做電機的選型設計;
(4).由電機的型號尺寸來做聯軸器的選型設計;
(5).由聯軸器的型號尺寸來決定軸徑以及對所決定的軸徑驗證;
(6).由軸徑來做軸承的選型;
(7).由軸承的尺寸來做機座及支撐座的選型設計
四、目標、主要特色及工作進度
1 目標:把大學四年里所學的專業(yè)知識系統(tǒng)地復習一遍,也學到了更多的知識,為以后工作打下基礎。
2 主要特色:根據原始數據設計雙軸無重力混合機,用CAD,Word軟件完成本次課程設計。
3工作進度:
1.查閱資料,英文資料翻譯 (2周)
2.撰寫開題報告 (1周)
3.設計并繪制混合機混合單元裝配圖 確 (4.5周)
4.繪制主要零件圖若干張 (2.5周)
5.編寫設計計算說明書(畢業(yè)論文)一份 (2周)
6.畢業(yè)設計審查、畢業(yè)答辯 (1周)
5、 參考文獻
[1] 李慶華主編. 材料力學 (第二版).成都:西南交通大學出版社,2002
[2] 成大先主編. 機械設計手冊 (第四版).北京:化學工業(yè)出版社,2002
[3] 朱孝錄主編. 機械傳動裝置選用手冊 .北京:機械工業(yè)出版社,1999
[4] 何鳴新、錢可強主編. 機械制圖 (第四版).北京:高等教育出版社,2001
[5] 陳秀寧主編. 機械設計基礎 (第二版).杭州:浙江大學出版社,1999
[6] 唐金松主編. 簡明機械設計手冊.上海:上海科學技術出版社,1992
[7] 何鏡民主編. 公差配合使用指南.北京:機械工業(yè)出版社,1990
[8] 唐保寧、高學滿主編. 機械設計與制造簡明手冊.上海:同濟大學出版社,1993
[9] 甘永立主編. 幾何量公差與檢測. 上海:上海科學技術出版社,2005
[10] 方昆凡主編 . 公差與配合技術手冊.北京:北京出版社,1999
[11] 張祖立,機械設計,中國農業(yè)出版社,2004.8。
[12] 哈爾濱工業(yè)大學,李益民,機械制造工藝設計簡明手冊,機械工業(yè)出版社,2008。
[13].化工輕工設備機械基礎.成都:科技大學出版社,1988年
[14].過程裝備控制技術及應用.北京:化學工業(yè)出版社.2001年
[15] 璞良貴,紀名剛主編.機械設計.第七版.北京:高等教育出版社,2001
[16] 金國淼等.攪拌設備(化工設備設計全書). 北京: 化學工業(yè)出版社,2002
[17] 徐灝主編,機械設計手冊.北京:機械工業(yè)出版社,1995.12
[18] 李克永.化工機械手冊. 天津: 天津大學出版社,1991.5
[19] Bd.H.Ernst.Die Hebezeuge,1999
[20] Lawrence S. Gould. Solid Modelers Are Doing More of the Manual Design Work
[21] Dirk Spindler Georg von Petery INA-Schaeffler KG. Angular Contact Ball
Bearings for a Rear Axle Differential.SAE ,2003
[22] Bathala C. Redlaty, V. S. Muvthy, Madaboosi S. Ananth, Chamarti D. P. Rao. Modeling of continuous Fertilizer Cranulation process for control. Part. Part. Syst. Charact 15(1998):156-160
畢業(yè)設計(論文)
題目:雙軸無重力粉體混合機混合單元的設計
系 別 航空工程系
專業(yè)名稱 機械設計制造及其自動化
班級學號 088105403
學生姓名 陳強華
指導教師 張緒坤
二O一二 年 六 月
南昌航空大學科技學院學士學位論文
目 錄
1 緒論 1
1.1 混合設備在工業(yè)生產中的應用 1
1.2 混合物料的種類及特性 2
2 混合罐結構設計 2
2.1 罐體的尺寸確定及結構選型 2
2.1.1 筒體及封頭型式 2
2.1.2 確定內筒體和封頭的直徑 2
2.1.3 確定內筒體高度H 3
2.1.4 選取夾套直徑 3
2.1.5 校核傳熱面積 3
2.2 內筒體及夾套的壁厚計算 3
2.2.1 選擇材料,確定設計壓力 4
2.2.2 夾套筒體和夾套封頭厚度計算 5
2.2.3 內筒體壁厚計算 6
2.3入孔選型及開孔補強設計 6
2.4混合器的選型 8
2.5混合附件 9
3 傳動裝置的設計 10
3.1 減速器和電動機的選型條件 10
3.2 電動機與減速器的選擇 10
3.3 聯軸器的選型 12
3.4 混合軸的設計及其結果驗證 12
3.5 軸與槳葉、聯軸器的連接 12
3.5.1 連接形式 12
3.5.2 聯軸器與軸的連接 13
3.6 軸承的設計與校核 13
3.6.1 混合軸受力模型選擇與軸長的計算 14
3.6.2 按扭轉變形計算計算混合軸的軸徑 17
3.6.3 根據臨界轉速核算混合軸軸徑 20
3.6.4 按強度計算混合軸的軸徑 23
3.6.5 按軸封處(或軸上任意點處處)允許徑向位移驗算軸徑 24
3.6.6 軸徑的最后確定 24
4 支撐裝置設計 24
4.1 混合機的支承部分 24
4.1.1 機座 25
4.1.2 軸承裝置 25
4.2 下支撐座的設計 26
4.2.1 軸承的選型 27
4.2.2 支撐套的設計 27
5 軸的密封 27
5.1 密封裝置的類型 27
5.2 軸的密封選擇 27
5.3 封口錐結構選型與計算 28
結 論 32
參考文獻 33
致 謝 34
南昌航空大學科技學院學士學位論文
The design of double-axial without gravity powder mixer's mixing unit
Student name: Chen Qianghua Class: 088105403
Supervisor: Zhang Xukun
Abstract: Mixing can make two or more different substances dispersed into each other in each other, so as to achieve uniform mixing, that can also speed up the process of heat and mass transfer.In industrial production, mixing operation is started from the chemical industry, focusing on food, fiber, paper, petroleum, water treatment, as part of the process widely used. In industrial production, most of the mixing operations are mechanical mixing system to medium and low voltage vertical mixing equipment based steel containers. Mixing equipment mainly contains three major parts of mixing device,seal and mixed cans.
The design issue is mainly related to biaxial mixer weightless dust mixed reaction mixer unit design, including mixed cans, motor and reducer selection, support equipment design, shaft seal set design.
Keywords: Mixer Axis gravity Mixing unit Mechanical design
Signature of supervisor: