第二章函數(shù)的概念與基本初等函數(shù)。第5課時(shí) 直線 平面垂直的判定及性質(zhì) 1 2018廣東清遠(yuǎn)一中月考 已知直線l 平面 直線m 平面 給出下列命題 l m l m l m l m 其中正確命題的序號(hào)是 A B C D 答案 D 解析 中l(wèi)與m可能相交 平行或異面 中結(jié)論正確 中兩平面。
2019高考數(shù)學(xué)一輪復(fù)習(xí)Tag內(nèi)容描述:
1、2.2函數(shù)的基本性質(zhì) 考綱解讀 考點(diǎn) 內(nèi)容解讀 要求 高考示例 常考題型 預(yù)測(cè)熱度 1.函數(shù)的單調(diào)性及最值 理解函數(shù)的單調(diào)性、最大(小)值及其幾何意義 2017課標(biāo)全國(guó),8; 2016北京,4; 2016北京,10 選擇題、 填空題、 解。
2、7.1 不等關(guān)系與不等式 命題探究 解答過(guò)程 答案:216 000 解析:設(shè)A、B兩種產(chǎn)品分別生產(chǎn)x件和y件,獲利z元. 由題意,得z=2 100 x+900y. 不等式組表示的可行域如圖,由題意可得解得故A點(diǎn)的坐標(biāo)為(60,100), 目標(biāo)函數(shù)為z=2 10。
3、10.2 統(tǒng)計(jì)及統(tǒng)計(jì)案例 考綱解讀 考點(diǎn) 內(nèi)容解讀 要求 高考示例 常考題型 預(yù)測(cè)熱度 1.抽樣方法 1.理解隨機(jī)抽樣的必要性和重要性 2.會(huì)用簡(jiǎn)單隨機(jī)抽樣方法從總體中抽取樣本;了解分層抽樣和系統(tǒng)抽樣方法 2017江蘇,3; 20。
4、10.1 分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理、排列與組合 命題探究 考綱解讀 考點(diǎn) 內(nèi)容解讀 要求 高考示例 ??碱}型 預(yù)測(cè)熱度 計(jì)數(shù)原理、排列、組合 (1)分類加法計(jì)數(shù)原理、分步乘法計(jì)數(shù)原理 理解分類加法計(jì)數(shù)原理和。
5、3.1 導(dǎo)數(shù)的概念及運(yùn)算 考綱解讀 考點(diǎn) 內(nèi)容解讀 要求 高考示例 常考題型 預(yù)測(cè)熱度 1.導(dǎo)數(shù)的概念與幾何意義 1.了解導(dǎo)數(shù)概念的實(shí)際背景 2.理解導(dǎo)數(shù)的幾何意義 2017課標(biāo)全國(guó),14; 2017天津,10; 2016山東,10; 2015課。
6、2.6 函數(shù)的圖象 考綱解讀 考點(diǎn) 內(nèi)容解讀 要求 高考示例 常考題型 預(yù)測(cè)熱度 1.函數(shù)圖象的判斷 在掌握基本初等函數(shù)圖象的基礎(chǔ)上,利用函數(shù)變化的快慢、函數(shù)的定義域、奇偶性、單調(diào)性、函數(shù)圖象過(guò)定點(diǎn)等特點(diǎn)對(duì)函數(shù)圖象作。
7、專題研究2 正、余弦定理應(yīng)用舉例 1.如圖所示,為了測(cè)量某湖泊兩側(cè)A,B間的距離,李寧同學(xué)首先選定了與A,B不共線的一點(diǎn)C(ABC的角A,B,C所對(duì)的邊分別記為a,b,c),然后給出了三種測(cè)量方案: 測(cè)量A,C,b;測(cè)。
8、第4課時(shí) 直線與圓、圓與圓的位置關(guān)系 1(2018江西南昌市一模)對(duì)任意的實(shí)數(shù)k,直線ykx1與圓x2y22x20的位置關(guān)系是( ) A相離 B相切 C相交 D以上都有可能 答案 C 解析 圓C:x2y22x。
9、專題研究 排列組合的綜合應(yīng)用 1(2017湖北宜昌一中月考)從1到10十個(gè)數(shù)中,任意選取4個(gè)數(shù),其中,第二大的數(shù)是7的情況共有( ) A18種 B30種 C45種 D84種 答案 C 解析 分兩步:先從8、9、10這三個(gè)。
10、第1課時(shí) 絕對(duì)值不等式 1不等式x2|x|20(xR)的解集是( ) Ax|2x2 Bx|x2或x2 Cx|1x1 Dx|x1或x1 答案 A 解析 方法一:當(dāng)x0時(shí),x2x20, 解得1x2,0x2. 當(dāng)x0時(shí),x2x2。
11、第1課時(shí) 向量的概念及線性運(yùn)算 1對(duì)于非零向量a,b,“ab0”是“ab”的( ) A充分不必要條件 B必要不充分條件 C充分必要條件 D既不充分也不必要條件 答案 A 解析 若ab0,則ab,所以ab。
12、3.3 定積分與微積分基本定理 考綱解讀 考點(diǎn) 內(nèi)容解讀 要求 高考示例 ??碱}型 預(yù)測(cè)熱度 1.定積分的計(jì)算 了解定積分的實(shí)際背景,了解定積分的基本思想,了解定積分的概念; 了解微積分基本定理的含義 掌握 2015湖南。
13、第6課時(shí) 指數(shù)函數(shù) 1給出下列結(jié)論: 當(dāng)a0時(shí),(a2)a3; |a|(n1,nN*,n為偶數(shù)); 函數(shù)f(x)(x2)(3x7)0的定義域是x|x2且x; 若5a0.3,0.7b0.8,則ab0. 其中正確的是( ) A。
14、第9課時(shí) 二面角 1(2018皖南八校聯(lián)考)四棱錐VABCD中,底面ABCD是邊長(zhǎng)為2的正方形,其他四個(gè)側(cè)面是腰長(zhǎng)為3的等腰三角形,則二面角VABC的余弦值的大小為( ) A. B. C. D. 答案 B 解析 如圖所示,取AB。
15、第2課時(shí) 不等式的證明與柯西不等式 1 設(shè)a b c是互不相等的正數(shù) 則下列不等式中不恒成立的是 A a 3 22a2 6a 11 B a2 a C a b 2 D 答案 C 解析 a 3 2 2a2 6a 11 a2 20 故A恒成立 在B項(xiàng)中不等式的兩側(cè)同時(shí)乘以a2 得a4 1。
16、9 6 拋物線及其性質(zhì) 考綱解讀 考點(diǎn) 內(nèi)容解讀 要求 高考示例 ??碱}型 預(yù)測(cè)熱度 1 拋物線的定義及其標(biāo)準(zhǔn)方程 掌握拋物線的定義 幾何圖形 標(biāo)準(zhǔn)方程及簡(jiǎn)單性質(zhì) 掌握 2017課標(biāo)全國(guó) 16 2016課標(biāo)全國(guó) 10 2016四川 8 2016浙。