左臂殼體鉆孔專用機(jī)床設(shè)計(jì)含CAD圖
左臂殼體鉆孔專用機(jī)床設(shè)計(jì)含CAD圖,左臂,殼體,鉆孔,專用,機(jī)床,設(shè)計(jì),cad
組合機(jī)床的機(jī)器整合和控制設(shè)計(jì)
D. M. Tilbury 和 S. Kota
組合機(jī)械系統(tǒng)機(jī)械工程部和應(yīng)用技巧工程研究中心
密西根大學(xué)
Ann Arbor, MI 48109-2125
ftilbury,kotag@umich.edu
摘要:在文中,我們針對組合機(jī)床及其相關(guān)控制系統(tǒng)給出了一個(gè)系統(tǒng)設(shè)計(jì)程序。
設(shè)計(jì)的出發(fā)點(diǎn)是一系列在給定的部位或者是部件上的操作,這些操作被分
解為一系列機(jī)器必須執(zhí)行的功能,每個(gè)功能對應(yīng)著一個(gè)機(jī)器控制組件,
一旦一個(gè)機(jī)器構(gòu)成了一系列的組件,整個(gè)機(jī)床就被連接起來了??刂圃O(shè)計(jì)
由操作序列控制組件、操作者接口控制組件和轉(zhuǎn)變模態(tài)的邏輯來完成。
關(guān)于組合機(jī)床的機(jī)器整合和控制設(shè)計(jì)以下是詳細(xì)的描述。
I.介紹
在今天的競爭市場中,制造系統(tǒng)必須要快速適應(yīng)不同客戶的需求并盡可能地減少產(chǎn)品的生命周期。傳統(tǒng)的生產(chǎn)流水線只為高價(jià)值的產(chǎn)品設(shè)計(jì),在一個(gè)固定的自動化模式下操作,因此不能很快適應(yīng)產(chǎn)品設(shè)計(jì)方面的改變。而在另一方面,傳統(tǒng)的以加工中心為基礎(chǔ)的彈性制造系統(tǒng)提供了廣義的彈性但是通常非常慢和昂貴而且不會因?yàn)樘厥猱a(chǎn)品和系列產(chǎn)品優(yōu)化。
密西根大學(xué)打算發(fā)展理論以便為組合機(jī)床系統(tǒng)促成技術(shù)[3][4]。新的系統(tǒng)能組合生產(chǎn)任意的新的部件,而非為某個(gè)部件而建立的專有制造系統(tǒng)。在文中, 我們描述一部整合機(jī)器和控制設(shè)計(jì)系統(tǒng)如何實(shí)現(xiàn)組合的。
為了要完全地提供工件加工過程中所需要的功能和能力,RMTs 被設(shè)計(jì)成一個(gè)給定的部件。給定一系列要運(yùn)行的操作,RMTs 就可以藉由裝配適當(dāng)?shù)臋C(jī)器組件來組合起來。每個(gè)運(yùn)動部件在庫中都有一個(gè)控制部件與它相聯(lián)系。當(dāng)機(jī)械組件被裝配起來后,控制組件將會被連接起來,機(jī)器也就準(zhǔn)備好運(yùn)行了。廣泛而耗時(shí)的專有控制系統(tǒng)將不再需要。在第II部分我們將會描述如何來通過一系列基礎(chǔ)機(jī)械組件來設(shè)計(jì)該機(jī)床,這項(xiàng)研究部分被NSF-ERC 所支持并授予編號EEC95-92125。
用一種定義明確的方式銜接。第III部分描述了該控制是如何同樣通過一個(gè)控制組件庫被裝配。在第IV部分我們將對該模組工程在設(shè)計(jì)和控制方面進(jìn)行多層次的組合。文章第v部分將以對將來工作的展望來結(jié)尾。
II.機(jī)械設(shè)計(jì)
在制造系統(tǒng)配置的持續(xù)的工作在密西根大學(xué)論及開始的問題從零件(或部件) 描述和提取機(jī)器操作必須制造零件(部件)。操作根據(jù)公差被聚集,次序?qū)嵭校倚枰到y(tǒng)周期,根據(jù)每個(gè)“群”都能夠在機(jī)床上獨(dú)立制造的意圖,在這里我們對圖1上所示的V6和V8的圓筒頭進(jìn)行一系列的鉆孔操作。被輸入到組合機(jī)床內(nèi)的設(shè)計(jì)程序是程序設(shè)計(jì)者為進(jìn)行這一操作而生成的位置數(shù)據(jù)。圖2顯示了包含定位和鉆孔信息在內(nèi)的樣品數(shù)據(jù)。
RMT設(shè)計(jì)程序包含了三個(gè)主要的設(shè)計(jì)階段:任務(wù)闡明、組件選擇和評估。在一段簡短的文字回顧后,這三個(gè)階段將會在本部分概略說明。
A. 相關(guān)研究
雖然組合在機(jī)械制造系統(tǒng)中只是一個(gè)相對新的概念,然而出版了的文章中卻
很少有關(guān)于組合機(jī)床設(shè)計(jì)的。但是,模組機(jī)床已經(jīng)上市多年,也有一些關(guān)于機(jī)械手、模組機(jī)械的文章,多少和組合機(jī)床的設(shè)計(jì)有一些關(guān)系。例如,Shinno 和 Ito[17][18][19][20] 計(jì)劃建立一個(gè)結(jié)構(gòu)組合機(jī)床的理論,他們將機(jī)床分解成簡單的幾何形式,例如盒子、汽缸蓋等等。Yan 和Chen[21][1] 把這一個(gè)工作延長到機(jī)械中心的結(jié)構(gòu)設(shè)計(jì)。Ouyang 等人 [12] 運(yùn)用Ito的方法為模組機(jī)床的綜合而且發(fā)展列舉機(jī)床組件的一個(gè)方法。Paradis 和 Khosla[15] 決定了模組的裝配時(shí)如何最佳地配置任務(wù)。
Fig.1.二個(gè)樣品零件,需要進(jìn)行的操作是給汽缸蓋上鉆定位孔,在V8汽缸蓋上,在一條線上二個(gè)這樣的定位孔,在V6汽缸蓋上有8個(gè)孔。
Fig.2.圖1中被顯示的樣品零件鉆孔時(shí)的數(shù)據(jù),CL文件是一個(gè)從CAD系列 (譬如IDEAS)中產(chǎn)生的,它包含主軸轉(zhuǎn)速、進(jìn)給量和冷凍劑數(shù)據(jù)…
Chen[2]講述了為指定工作發(fā)現(xiàn)最佳化裝配結(jié)構(gòu)的方法,他的程序以影響裝配的矩陣為基礎(chǔ)。而且運(yùn)用了一個(gè)遺傳基因的運(yùn)算法則來以最佳化的方法解決問題。在系統(tǒng)前面,羅杰和 Bottaci[16] 討論了組合制造系統(tǒng)的重要性,歐恩等人 [13]發(fā)明了模組制造系統(tǒng)綜合為教育的目標(biāo)規(guī)劃。在文中,運(yùn)動表現(xiàn)的傳統(tǒng)方法拓?fù)浣Y(jié)構(gòu) (也就是螺絲釘理論, 曲線圖理論, 等等。) 是用來獲取 RMTs 的特性的。 這些數(shù)學(xué)的功能作為拓?fù)渚C合,功能-分解, 而且映射程序; 細(xì)節(jié)功能在 [9] 中被發(fā)現(xiàn)。
B.任務(wù)闡明
RMT 的設(shè)計(jì)從任務(wù)闡明開始, 哪些需要分析切削刀地點(diǎn)數(shù)據(jù)確定是必要完成的套作用需要的運(yùn)動學(xué)行動。分為三個(gè)步驟。首先, 圖表用來抽象地表示一個(gè)運(yùn)動。這些圖表然后被分解成功能, 并且功能最后被映射機(jī)器存在在庫里的模塊。
機(jī)床結(jié)構(gòu)的圖表表示法考慮到供選擇配置的系統(tǒng)的列舉并且提供證明方法非同形圖表。圖表表示法并且被使用為簿記分配機(jī)器模塊到圖表元素。圖表包括一套端點(diǎn)被連接一起由邊緣。在使用一張圖表作為一個(gè)抽象表示法機(jī)械工具結(jié)構(gòu), 我們定義二種不同類型端點(diǎn): 類型0和類型1。端點(diǎn)代表一個(gè)物理對象與二個(gè)口岸; 各個(gè)口岸代表在哪里它可能附有的對象 。類型0的 端點(diǎn)輸入和輸出口成一條直線, 反之類型1的端點(diǎn)輸入和輸出口互相垂直。機(jī)器制造的任務(wù)就是通過刀具是平行還是垂直工件來說明是類型0還是類型1的。
圖4 顯示一張圖表為類型0的任務(wù)。四個(gè)類型1的端點(diǎn)與幾個(gè)類型0的端點(diǎn)構(gòu)成一個(gè)C形式的機(jī)械結(jié)構(gòu)。由于類型0 端點(diǎn)不會改變定位方向, 他們可能被各種各樣的組合當(dāng)成間隔號。根端點(diǎn)代表機(jī)床的基礎(chǔ)或?qū)?。選擇根端點(diǎn)不是唯一的; 不同的選擇將收效在分明機(jī)床的設(shè)計(jì)上。結(jié)構(gòu)作用是分配端點(diǎn)到圖表; 運(yùn)動學(xué)作用 (需要) 的地方被分配到邊緣。例如, 圖4 顯示一個(gè)例子怎樣平移行動 X; Y 和Z 方向可能被分配到圖表邊緣, 代表相對行動在物理對象之間由邊緣的二個(gè)端點(diǎn)代表。
機(jī)床的基本的功能就是刀具和工件之間的相對運(yùn)動。這些運(yùn)動學(xué)作用將由同類矩陣[ 11 ]來表示; 機(jī)床所需要的功能將被輸入在矩陣T 。機(jī)器制造行動必要執(zhí)行一項(xiàng)指定的任務(wù)是從操作序列獲得。在圖2顯示的程序文件包含了刀具位置和運(yùn)動在笛卡兒坐標(biāo)系下的同一系統(tǒng)。
Fig.3.高等操作序列,表示原因的產(chǎn)生和同作,序列的這一概要表現(xiàn)操作源于圖2顯示的CL數(shù)據(jù),它將會用來設(shè)計(jì)序列控制。
Fig.4.一個(gè)表示機(jī)床結(jié)構(gòu)的圖,平移運(yùn)動被分配到圖表邊緣,端點(diǎn)有結(jié)構(gòu)的功能性。
Fig.5.功能分解模板
例如, 第一個(gè)運(yùn)動可以寫成:
這里P1 代表機(jī)床的位置和刀具的安置, 而F1代表進(jìn)給運(yùn)動。從在任何二個(gè)毗鄰位置之間的改變,運(yùn)動可以描述成:
其它運(yùn)動描述相似。對應(yīng)于各類型機(jī)器操作, 一個(gè)模板被檢索如同一個(gè)起點(diǎn)在辨認(rèn)各種各樣運(yùn)動學(xué)作用必要執(zhí)行用機(jī)器制造任務(wù)。例如, 模板為碾碎和鉆井操作表示, 運(yùn)動學(xué)作用是必要的為成主軸革命, 工件進(jìn)給和工件安置。由使用這塊模板, 與確切進(jìn)給和安置的信息提供在處理計(jì)劃, 我們能獲得是必要的確切的運(yùn)動學(xué)作用譬如工件自轉(zhuǎn), 依照表5的描述翻譯x; Y, 和Z 為進(jìn)給和翻譯Z 為工件安置。
每個(gè)運(yùn)動學(xué)作用被辨認(rèn)在作用分解階段被映射對圖表的邊緣描述上面。被分配作用到不同的邊緣能引起多種解答。由于純粹地平移行動是可交換的, 他們的次序在圖表能被互換。在作用映射, 重要信息是螺絲拓?fù)浣Y(jié)構(gòu)行動(包括純凈的旋轉(zhuǎn)的行動) 和機(jī)床的拓?fù)浣Y(jié)構(gòu)。
Fig.6.圖4的結(jié)構(gòu)曲線圖能夠被多種不同的模塊選擇。
Fig.7.機(jī)床模塊表示法。CAD 模型一張幻燈片為一種模件機(jī)械工件被顯示在左邊,它的矩陣被顯示在右邊。
C. 組件選擇
商業(yè)可利用的模塊從被挑選模塊庫為每個(gè)作用(結(jié)構(gòu)如同運(yùn)動學(xué)) 被映射對圖表在任務(wù)闡明階段。數(shù)據(jù)被存放為各個(gè)模塊庫包括同源矩陣代表它的運(yùn)動學(xué)或結(jié)構(gòu)作用, 轉(zhuǎn)彎傳染媒介由運(yùn)動信息補(bǔ)充,一的范圍服從矩陣代表模塊突端, 模塊連通性信息, 和功率需要量(為活躍模塊譬如主軸和幻燈片) 。
第一步在模塊選擇將比較同類模塊的變革矩陣與任務(wù)要求矩陣這樣當(dāng)適當(dāng)模塊被選擇符合任務(wù)要求, 所有模塊矩陣產(chǎn)品應(yīng)該是相等的與需要任務(wù)矩陣: T = T1T2…Tn 。再, 那里也許是模塊許多可能的選擇為一指定的結(jié)構(gòu)配置。圖6 顯示怎么不同的幻燈片, 主軸, 并且結(jié)構(gòu)元素可能是裝配的達(dá)成協(xié)議對圖表圖4 。
一個(gè)幻燈片模塊, 以它的CAD 模型和變革矩陣, 被顯示在表7 。它是可勝任一線性行動的方向, 由μ 1個(gè)表明它的變革矩陣。它的數(shù)據(jù)庫詞條, 被顯示在表里 I, 存放不僅它的變革矩陣而且制造商名字, 模型號, 最初的位置, 力量水平, 和行動數(shù)據(jù)。轉(zhuǎn)彎傳染媒介被增添信息關(guān)于極小, 最初, 和最大位移模塊。
D.評估
一套運(yùn)動學(xué)可行的模塊一次是選擇, 有效的機(jī)器設(shè)計(jì)必須被評估。標(biāo)準(zhǔn)為組合機(jī)床的評估工具由上述系統(tǒng)的做法綜合包括工作信封, 自由度的數(shù)量, 模塊被使用的數(shù)量, 和動態(tài)曲度。
運(yùn)動學(xué)自由程度的數(shù)量機(jī)器的工具必須被保留對極小值必需見面要求, 減少驅(qū)動力量和使誤差鏈減到最小。各個(gè)活躍例子展示設(shè)計(jì)由這方法學(xué)引起確切地有自由程度的數(shù)量必要執(zhí)行必需的機(jī)器操作在指定的部份 [ 10 ] 。引起使用這的機(jī)械工具設(shè)計(jì)圖1 的例子零件的方法學(xué)被顯示在表8 。
有效的設(shè)計(jì)必須被評估談到期望的準(zhǔn)確性。整個(gè)機(jī)器的曲度工具, 最重要的因素的當(dāng)中一個(gè)在表現(xiàn), 是根據(jù)模塊估計(jì)服從矩陣和連接的方法。
Fig.8.為二個(gè)不同零件設(shè)計(jì)的組合機(jī)床。
III. 控制設(shè)計(jì)
用模塊構(gòu)成機(jī)床,便形成控制。在這一工作中, 我們集中于邏輯控制為機(jī)器模塊的程序化和協(xié)調(diào); 分離系統(tǒng)形式主義被顯示在[ 6 ]上。用一個(gè)控制模塊聯(lián)系了各個(gè)活躍機(jī)器模塊; 我們提到這些作為機(jī)器控制模塊。在機(jī)器設(shè)計(jì), 那里是連接的被動元素活躍元素一起。在控制設(shè)計(jì), 那里必需并且連接機(jī)器的模塊控制模塊??刂频恼w建筑學(xué)系統(tǒng)為RMT 被顯示在表9 。結(jié)構(gòu)是相似為或者二個(gè)機(jī)器被顯示在上圖8; 為V-8 機(jī)器, 沒有Y軸方向的控制模塊。依照顯示, 機(jī)器控制模塊是在最低水平; 這交互式直接地以機(jī)械系統(tǒng)。用戶接口控制模塊是在最高的水平, 互動與用戶通過電鈕和顯示。操作序列控制模塊被定義根據(jù)了高級操作序列為部份依照圖3顯示。三個(gè)模塊處理方式開關(guān)邏輯。在這個(gè)部分, 我們簡要描述每個(gè)這些型控制模塊并且他們的互作用和協(xié)調(diào)。
A.機(jī)器控制模塊
各個(gè)機(jī)器控制模塊有一個(gè)明確定義的接口規(guī)格: 它接受分離事件命令從一個(gè)指定的集合, 和回歸分離事件反應(yīng)從被給集合。在控制模塊之內(nèi)將是所有連續(xù)易變控制, 譬如伺服操縱為軸。這連續(xù)控制被設(shè)計(jì)使用標(biāo)準(zhǔn)PID 算法并且軸參量譬如慣性, 力量, 主角螺絲投, 來自機(jī)器模塊定義。在加法, 各個(gè)機(jī)器控制模塊將包含控制為任一個(gè)機(jī)器服務(wù)聯(lián)系了機(jī)器模塊, 譬如潤滑或蓄冷劑。因而, 各個(gè)機(jī)器控制模塊是一位獨(dú)立性的控制器為它伴隨的機(jī)器模塊, 和可能被設(shè)計(jì)和獨(dú)立地測試機(jī)器的剩余。
機(jī)器控制模塊的設(shè)計(jì)必須完成只一次為各個(gè)機(jī)器模塊在圖書館里。每當(dāng)機(jī)器模塊被使用在機(jī)器設(shè)計(jì), 控制模塊可能被使用在伴生的控制設(shè)計(jì)??刂颇K也許獨(dú)立地被使用, 與它自己的處理能力、I/O 和網(wǎng)絡(luò)連接控制系統(tǒng)的剩余, 或它也許被使用作為片斷整體機(jī)器控制器被實(shí)施集中化時(shí)尚。一個(gè)機(jī)器控制模塊的例子為幻燈片是顯示在上圖10 。有四命令模塊可能接受: 行動向位置x, 中止, 凹凸部在正面 x, 和凹凸部在消極x 方向。當(dāng)它完成了必要的操作, 它返"done" 的命令。定時(shí)器是包括的(但沒顯示); 如果規(guī)定的時(shí)間過去了而一個(gè)完成命令都沒有返回, "error" 命令將返回。
Fig.10. 滑控制器。幻燈片控制器包括(在之內(nèi)箱子) 伺服控制器為幻燈片。當(dāng)幻燈片到達(dá)了命令的位置時(shí), "done" 命令返回。
B.操作序列
操作序列模塊被定義從高階序列從切削刀地點(diǎn)數(shù)據(jù)被提取顯示在上圖3 。這控制主要結(jié)構(gòu)模塊是狀態(tài)序列代表序列操作必須進(jìn)行在零件; 等待狀態(tài)是包括的在各步的完成。圖 11表示操作序列模塊為機(jī)器圖8(b) 和操作序列圖3 。簡單錯(cuò)誤處理僅僅通過錯(cuò)誤用戶界面被合并在設(shè)計(jì)但不是顯示在上圖為樸素。如果"reset" 命令被接受, 主軸被關(guān)閉并且幻燈片被重新設(shè)置對它的位置。操作序列為V6 機(jī)器相似, 但有更多操作因?yàn)槟抢锸切枰绦蚧亩€(gè)線性軸。依照被顯示整體結(jié)構(gòu)圖9, 那里是二個(gè)口岸對操作序列控制模塊: 你連接到自動方式控制模塊, 和另連接到?jīng)_突驗(yàn)查員。接口對操作序列控制模塊被顯示在表12 。
C.模塊控制結(jié)構(gòu)
用戶接口控制模塊與用戶相處融洽通過一套電鈕轉(zhuǎn)動控制系統(tǒng)斷斷續(xù)續(xù), 開關(guān)在控制方式之間, 和單向通過操作序列。它的主函數(shù)是通過用戶命令通過對控制器的剩余, 并且顯示機(jī)器的現(xiàn)狀用戶。
機(jī)床控制器有幾個(gè)不同的方式。在自動方式, 操作序列連續(xù)地執(zhí)行得; 其它方式也許執(zhí)行操作序列只一次。在步方式下, 電鈕命令必須是過去經(jīng)常創(chuàng)始操作序列的每步, 和在人工式, 更加美好的控制是可利用的通過凹凸部命令那移動活躍元素每少量在一個(gè)時(shí)間。而不是重覆操作序列為每控制方式, 序列的一個(gè)表示法被使用。方式開關(guān)邏輯確定適當(dāng)?shù)臅r(shí)候送"proceed" 命令給操作序列。
沖突驗(yàn)查員控制模塊的主函數(shù)是通過命令從操作序列和人工式模塊對適當(dāng)?shù)臋C(jī)器控制 模塊 。它得以進(jìn)入對機(jī)器的數(shù)據(jù)庫的模塊定義, 和可能使用那些檢查非法導(dǎo)致機(jī)械干涉的命令。由于明確定義的接口對低級機(jī)器控制模塊, 沖突驗(yàn)查員的設(shè)計(jì)能做使用高級控制命令。細(xì)節(jié)物理I/O 被處理在機(jī)器控制模塊。
如上所述, 各個(gè)控制模塊代表由接受某一語言的一臺有限狀態(tài)機(jī) (是允許的) 的事件順序。我們顯示了那以一些明確定義的條件在這些語言并且模塊連接, 整體控制結(jié)構(gòu)能被保證是無曲度[ 8 ]; 列舉聯(lián)合的邏輯控制器的可能的序列, 會是不切實(shí)際的, 不要求被證明。
Fig.11. 操作序列模塊, 顯示整體序列操作和事件。接口對模塊被顯示在表12 。重新設(shè)置命令可能在任何時(shí)候被接受; 只一些事件蹤影被簡單顯示。錯(cuò)誤事件蹤影也被從圖中省去。
Fig.12. 操作序列控制模塊的結(jié)構(gòu)圖, 顯示接口和共有的事件。由模塊接受
的事件用斜體字表現(xiàn);與上層模塊共有的事件是其余的。
IV.組合機(jī)床
在庫中的機(jī)床模塊可能會在許多不同的機(jī)床設(shè)計(jì)被使用??刂颇K聯(lián)系的各個(gè)機(jī)器模塊將被合并到整個(gè)機(jī)床的控制設(shè)計(jì)過程中各個(gè)模塊在他們被聯(lián)系之前都能夠被獨(dú)立地測試,因此通過變短設(shè)計(jì)循環(huán)周期和舷梯時(shí)間,機(jī)床模塊庫中的控制模塊可能極大減少一個(gè)新用機(jī)床制造系統(tǒng)的前置時(shí)間。
因?yàn)榱慵母淖?譬如顯示在上圖1中的V6和 V-8 氣缸蓋), 機(jī)床結(jié)構(gòu)將需要重新構(gòu)造, 或增加一根軸或改變主軸。當(dāng)這類型重組發(fā)生,需要被對操作序列控制模塊和沖突驗(yàn)查員做變動(如果新機(jī)械干涉產(chǎn)生的話) 。
由于他們擁有一個(gè)明確定義的接口, 每個(gè)單獨(dú)控制模塊都能夠被獨(dú)立地更換成其他模塊。只要被重新設(shè)計(jì)的控制模塊也有同樣的離散接口, 最終的系統(tǒng)被保證是囊中之物。例如, 摩擦報(bào)償控制算法也許會添加在滑臺控制模塊上。這會增加那個(gè)模塊的表現(xiàn)力, 但在低級模塊之中肯定會有些許的變動。
V. 結(jié)論和展望
歷史上, 機(jī)床設(shè)計(jì)是經(jīng)驗(yàn)所得 。在此次研究中, 我們描述了一個(gè)數(shù)學(xué)依據(jù)為組合的綜合評估機(jī)床以及和他們伴生的控制器。這種研究工作列舉兩個(gè)機(jī)床配置的產(chǎn)生和模件控制設(shè)計(jì)。系統(tǒng)的設(shè)計(jì)過程從用機(jī)器制造的要求開始。
機(jī)床綜合的被提出的理論是允許機(jī)器模塊庫是預(yù)先完成并且存放在數(shù)據(jù)庫, 獨(dú)立性與控制器并且準(zhǔn)備被使用在任一個(gè)機(jī)器設(shè)計(jì)。該理論要保證所有運(yùn)動學(xué)上可實(shí)行的不同的配置系統(tǒng)分別被列舉,以便減少錯(cuò)過一個(gè)好設(shè)計(jì)的機(jī)會。
我們已經(jīng)開發(fā)了一個(gè)基于Java 項(xiàng)目的自動化機(jī)床設(shè)計(jì)過程;當(dāng)前任務(wù)是合并控制設(shè)計(jì)程序在已有的框架之內(nèi)。我們還擴(kuò)展當(dāng)前可用機(jī)床和控制模塊庫以及形式上抽象從連續(xù)多變的控制到離散領(lǐng)域。
鳴謝
作者衷心地感謝各方支持和參加了這個(gè)項(xiàng)目的ERC工業(yè)成員無私的反饋 。MEAM 畢業(yè)生Eric Endsley, Morrison Lucas和Yong-Moon對工作的貢獻(xiàn)已被描述在文中。
References
[1] F.-C. Chen and H.-S. Yan. Configuration synthesis of machining centres with tool change mechanisms. International Journal of
Machine Tools and Manufacture, 39(2):273-295, February 1999.
[2] I.-M. Chen. Theory and Application of Modular Reconfigurable
Robot Systems. PhD thesis, California Institute of Technology,
1994.
[3] Y. Koren. Reconfigurable machining systems: Vision with examples.ERC/RMS #19, University of Michigan, January 1999.
[4] Y. Koren and A. G. Ulsoy. Engineering research center for reconfigurable machining systems. http://erc.engin.umich.edu.
[5] S. Kota. A methodology for automated design of reconfigurable
machine tools. In ERC/RMS: Annual Report, pages35-40.Universityof Michigan, 1999.
[6] R. Kumar and V. K. Garg. Modeling and Control of Logical
Discrete Event Systems. Kluwer Academic Publishers, 1995.
[7] C. Ling, S.-Y. Sung, T. M. L. Olsen, and D. Yip-Hoi. System
level process planning for RMS. ERC/RMS #24, University of
Michigan, 1999.
[8] M. R. Lucas, E. W. Endsley, and D. M. Tilbury. Coordinated
logic control for reconfigurable machine tools. In Proceedings of
the American Control Conference, pages 2107{2113, 1999.
[9] Y.-M. Moon and S. Kota. Generalized kinematic modeling
method for reconfigurable machine tools. In Proceedings of
the ASME Design Engineering Technical Conferences, Atlanta,
September 1998.
[10] Y.-M.Moon and S. Kota. Design of reconˉgurable machine tools.ASME Journal of Manufacturing Systems, 1999. Submitted.
[11] R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Introduction to Robotic Manipulation. CRC Press, 1994.
[12] M.-A. Ouyang, C. Yi, C. Li, and J. Zhou. Intelligent layout for
modular design of machine tools. SPIE, 2620:547-552, 1995.
[13] S. Owen, M. C. Bonney, and A Denford. A modular reconfigurable approach to the creation of flexible manufacturing cellsfor educational purposes. Institute of Electrical Engineers, Colloquium Digest, 1(174):1-13, October 1995.
[14] G. Pahl and W. Beitz. Engineering Design. Springer-Verlag,
New York, 1984.
[15] C. J. J. Paredis and P. K. Khosla. Synthesis methodology for task based reconfiguration of modular manipulator systems. In Proceedings of the International Symposium on Robotics Research pages 2-5, 1993.
[16] G. G. Rogers and L. Bottaci. Modular production systems: a
new manufacturing paradigm. Journal of Intelligent Manufacturing,8:147-156, 1997.
[17] H. Shinno and Y. Ito. Structural description of machine tools
- 1. Description method and some application. Bulletin of the
JSME, 24(187):251-258, January 1981.
[18] H. Shinno and Y. Ito. Structural description of machine tools
- 2. Evaluation of structural similarity. Bulletin of the JSME,
24(187):259-265, January 1981.
[19] H. Shinno and Y. Ito. A proposed generating method for the
structural configuration of machine tools. In ASME Winter Annual Meeting, 1984. ASME paper 84-WA/Prod-22.
[20] H. Shinno and Y. Ito. Computer aided concept design for structural configuration of machine tools: Variant design using direct graph. ASME Journal of Mechanisms, Transmissions, an Automation in Design, 109:372-376, September 1987.
[21] H.-S. Yan and F.-C. Chen. Configuration synthesis of machiningcenters without tool change arms. Mechanism and MachineTheory, 33(1-2):197-212, 1998.
收藏