2019-2020年高考數(shù)學總復習 第一章1.2 命題及其關系、充分條件與必要條件教案 理 北師大版.doc
《2019-2020年高考數(shù)學總復習 第一章1.2 命題及其關系、充分條件與必要條件教案 理 北師大版.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高考數(shù)學總復習 第一章1.2 命題及其關系、充分條件與必要條件教案 理 北師大版.doc(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學總復習 第一章1.2 命題及其關系、充分條件與必要條件教案 理 北師大版 考綱要求 1.理解命題的概念. 2.了解“若p,則q”形式的命題及其逆命題、否命題與逆否命題,會分析四種命題的相互關系. 3.理解必要條件、充分條件與充要條件的意義. 知識梳理 1.命題 能夠__________、用文字或符號表述的語句叫作命題.其中__________的命題叫作真命題,__________的命題叫作假命題. 2.四種命題及其關系 (1)四種命題的表示及相互之間的關系. (2)四種命題的真假關系 ①互為逆否的兩個命題__________(__________或__________). ②互逆或互否的兩個命題__________. 3.充分條件與必要條件 (1)如果p?q,那么p是q的__________,q是p的__________. (2)如果p?q,q?p,那么p是q的__________,記作__________. 基礎自測 1.若命題p的逆命題是q,否命題是r,則命題q是命題r的( ). A.逆命題 B.否命題 C.逆否命題 D.不等價命題 2.命題“若a>-3,則a>-6”以及它的逆命題、否命題、逆否命題中假命題的個數(shù)為( ). A.1 B.2 C.3 D.4 3.a(chǎn)<0,b<0的一個必要條件是( ). A.a(chǎn)+b<0 B.a(chǎn)-b> C.>1 D.<-1 4.直線l1∥l2的一個充分條件是( ). A.l1∥平面α,l2∥平面α B.直線l1⊥直線l3,直線l2⊥直線l3 C.l1平行于l2所在的平面 D.l1⊥平面α,l2⊥平面α 5.命題“如果+(y+1)2=0,則x=2且y=-1”的逆否命題為__________. 思維拓展 1.命題“若p,則q”的逆命題為真,逆否命題為假,則p是q的什么條件? 提示:逆命題為真即q?p,逆否命題為假,即pq,故p是q的必要不充分條件. 2.“命題的否定”與“否命題”一樣嗎? 提示:不一樣.“否命題”與“命題的否定”是兩個不同的概念.如果原命題是“若p,則q”,那么這個原命題的否定是“若p,則q”,即只否定結(jié)論;而原命題的否命題是“若p,則q”,即既否定命題的條件,又否定命題的結(jié)論. 3.如何理解充分條件與必要條件的傳遞性與對稱性? 提示:傳遞性:若p是q的充分(必要)條件,q是r的充分(必要)條件,則p是r的充分(必要)條件;對稱性:若p是q的充分條件,則q是p的必要條件,即“p?q”?“q?p”. 一、四種命題及其關系 【例1】命題“若f(x)是奇函數(shù),則f(-x)是奇函數(shù)”的否命題是__________. 方法提煉1.命題真假的判定:對于命題真假的判定,關鍵是分清命題的條件與結(jié)論,只有將條件與結(jié)論分清,再結(jié)合所涉及的知識才能正確地判斷命題的真假. 2.掌握原命題和逆否命題,否命題和逆命題的等價性,當一個命題直接判斷真假性不容易進行時,可以轉(zhuǎn)而判斷其逆否命題的真假. 3.當一個命題有大前提而需寫出其他三種命題時,必須保留大前提不變. 請做[針對訓練]1 二、充分條件與必要條件的判定 【例2-1】已知各個命題A,B,C,D,若A是B的充分不必要條件,C是B的必要不充分條件,D是C的充分必要條件,試問D是A的__________條件(填:充分不必要、必要不充分、充要、既不充分也不必要). 【例2-2】是否存在實數(shù)m,使得2x+m<0是x2-2x-3>0的充分條件? 方法提煉判斷充分條件、必要條件的方法 1.命題判斷法 設“若p,則q”為原命題,那么: (1)原命題為真,逆命題為假時,則p是q的充分不必要條件; (2)原命題為假,逆命題為真時,p是q的必要不充分條件; (3)原命題與逆命題都為真時,p是q的充要條件; (4)原命題與逆命題都為假時,p是q的既不充分也不必要條件. 2.集合判斷法 從集合的觀點看,建立命題p,q相應的集合:p:A={x|p(x)成立},q:B={x|q(x)成立},那么: (1)若A?B,則p是q的充分條件,若AB時,則p是q的充分不必要條件; (2)若B?A,則p是q的必要條件,若BA時,則p是q的必要不充分條件; (3)若A?B且B?A,即A=B時,則p是q的充要條件. 3.等價轉(zhuǎn)化法 條件和結(jié)論帶有否定性詞語的命題,常轉(zhuǎn)化為其逆否命題來判斷. 請做[針對訓練]2 三、充分條件與必要條件的證明及應用 【例3-1】“x>0”是“>0”成立的( ). A.充分不必要條件 B.必要不充分條件 C.既不充分也不必要條件 D.充要條件 【例3-2】已知P={x|x2-8x-20≤0},S={x|1-m≤x≤1+m}. (1)是否存在實數(shù)m,使x∈P是x∈S的充要條件,若存在,求出m的范圍; (2)是否存在實數(shù)m,使x∈P是x∈S的必要條件,若存在,求出m的范圍. 【例3-3】已知數(shù)列{an}的前n項和Sn=pn+q(p≠0且p≠1),求證:數(shù)列{an}成等比數(shù)列的充要條件是p≠0,p≠1且q=-1. 方法提煉1.證明充要性首先要分清誰是條件,誰是結(jié)論.在這里要注意兩種說法:“p是q的充要條件”與“p的充要條件是q”;前者p是條件,后者q是條件. 2.證明分為兩個環(huán)節(jié):一是充分性,即由條件推結(jié)論;二是必要性,即由結(jié)論推條件.證明時,不要認為它是推理過程的“雙向書寫”,而應該進行由條件到結(jié)論,由結(jié)論到條件的兩次證明. 3.解決例3-2之類問題時,一般是把充分條件、必要條件或充要條件轉(zhuǎn)化為集合之間的關系,然后根據(jù)集合之間的關系列出關于參數(shù)的不等式(組)求解. 請做[針對訓練]3 考情分析 從近兩年的高考試題看,充要條件的判定、命題真假的判斷等是高考的熱點,題型以選擇題、填空題為主,分值為5分,屬中低檔題目.本節(jié)知識常和函數(shù)、不等式、向量、三角函數(shù)及立體幾何中直線、平面的位置關系等有關知識相結(jié)合,考查學生對函數(shù)的有關性質(zhì)、不等式的解法及直線與平面位置關系判定的掌握程度. 預測xx年高考仍將以充要條件的判定、判斷命題的真假為主要考點,重點考查學生的邏輯推理能力. 針對訓練 1.關于命題“若拋物線y=ax2+bx+c的開口向下,則{x|ax2+bx+c<0}≠”的逆命題、否命題、逆否命題,下列結(jié)論成立的是( ). A.都真 B.都假 C.否命題真 D.逆否命題真 2.使不等式2x2-5x-3≥0成立的一個充分不必要條件是( ). A.x<0 B.x≥0 C.x∈{-1,3,5} D.x≤-或x≥3 3.已知p:-4<x-a<4,q:(x-2)(x-3)<0,且q是p的充分條件,則a的取值范圍為( ). A.-1<a<6 B.-1≤a≤6 C.a(chǎn)<-1或a>6 D.a(chǎn)≤-1或a≥6 4.(xx江西六校聯(lián)考)如果對于任意實數(shù)x,[x]表示不超過x的最大整數(shù),例如[3.27]=3,[0.6]=0,那么“[x]=[y]”是“|x-y|<1”的( ). A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 5.(xx陜西高考,理12)設n∈N+,一元二次方程x2-4x+n=0有整數(shù)根的充要條件是n=__________. 參考答案 基礎梳理自測 知識梳理 1.判斷真假 正確 錯誤 2.(2)①等價 同真 同假?、诓坏葍r 3.(1)充分條件 必要條件 (2)充要條件 p?q 基礎自測 1.C 解析:因為命題p的逆命題是q,即命題q的逆命題是p,又p的否命題是r,所以命題q是命題r的逆否命題,故選C. 2.B 解析:原命題為真命題,從而其逆否命題也為真命題;逆命題:若a>-6,則a>-3為假命題,則否命題也為假命題.故選B. 3.A 解析:由數(shù)的性質(zhì)知:a<0,b<0,則a+b<0,所以選A. 4.D 解析:平行于同一平面的兩直線有三種位置關系,故A錯誤;同理判斷B,C錯誤,故D正確. 5.如果x≠2或y≠-1,則+(y+1)2≠0 解析:“x=2且y=-1”的否定為“x≠2或y≠-1”,+(y+1)2=0的否定為+(y+1)2≠0. 故逆否命題為:“如果x≠2或y≠-1,則+(y+1)2≠0”. 考點探究突破 【例1】 若f(x)不是奇函數(shù),則f(-x)不是奇函數(shù) 解析:原命題的否命題是既否定題設又否定結(jié)論,故“若f(x)是奇函數(shù),則f(-x)是奇函數(shù)”的否命題是“若f(x)不是奇函數(shù),則f(-x)不是奇函數(shù)”. 【例2-1】 必要不充分 解析:∵A?B?C?D, 而DDA,∴D是A的必要不充分條件. 【例2-2】 解:欲使2x+m<0是x2-2x-3>0的充分條件,只要?{x|x<-1或x>3}, 則只要-≤-1,即m≥2. 故存在實數(shù)m,使2x+m<0是x2-2x-3>0的充分條件. 【例3-1】 A 解析:∵x>0?>0,而>0Dx>0,∴x>0是>0成立的充分不必要條件. 【例3-2】 解:(1)由x2-8x-20≤0, 得-2≤x≤10.∴P={x|-2≤x≤10}, ∵x∈P是x∈S的充要條件,∴P=S, ∴∴ ∴這樣的m不存在. (2)由題意x∈P是x∈S的必要條件,則S?P,∴∴m≤3. 綜上,可知m≤3時,x∈P是x∈S的必要條件. 【例3-3】 解:先證充分性: 當p≠0,p≠1,且q=-1時,Sn=pn-1. ∴S1=p-1,即a1=p-1, 又n≥2時,an=Sn-Sn-1, ∴an=(p-1)pn-1(n≥2). 又n=1時也滿足, ∴an=(p-1)pn-1(n∈N+), ∴{an}是等比數(shù)列. 再證必要性: 當n=1時,a1=S1=p+q, 當n≥2時,an=Sn-Sn-1=(p-1)pn-1. 由于p≠0,p≠1,∴當n≥2時,{an}是等比數(shù)列.要使{an}(n∈N+)是等比數(shù)列, 則=p,即(p-1)p=p(p+q), ∴q=-1,即{an}是等比數(shù)列的充要條件是p≠0且p≠1且q=-1. 演練鞏固提升 針對訓練 1.D 解析:對于原命題:“若拋物線y=ax2+bx+c的開口向下,則{x|ax2+bx+c<0}≠”,這是一個真命題,所以其逆否命題也為真命題,但其逆命題:“若{x|ax2+bx+c<0}≠,則拋物線y=ax2+bx+c的開口向下”是一個假命題,因為當不等式ax2+bx+c<0的解集非空時,可以有a>0,即拋物線的開口可以向上,因此否命題也是假命題,故選D. 2.C 解析:∵2x2-5x-3≥0成立的充要條件是x≤-或x≥3, ∴對于A,當x=-時,2x2-5x-3<0. 同理,B選項也可用特殊值驗證,而D選項是它的充要條件,故選C. 3.B 解析:設q,p表示的范圍為集合A,B,則A=(2,3),B=(a-4,a+4). 因為q是p的充分條件,則有A?B, 即所以-1≤a≤6.故選B. 4.A 解析:設[x]=[y]=n,n∈Z,則x,y∈[n,n+1),x-y∈(-1,1),即|x-y|<1,所以[x]=[y]?|x-y|<1,反之,若x=2.1,y=1.9,滿足|x-y|<1,但是[x]=2,[y]=1,所以[x]≠[y].故|x-y|<1 [x]=[y].因此,選A. 5.3或4 解析:∵方程有實數(shù)根, ∴Δ=16-4n≥0. ∴n≤4,原方程的根x==2為整數(shù),則為整數(shù). 又∵n∈N+,∴n=3或4. 反過來,當n=3時,方程x2-4x+3=0的兩根分別為1,3,是整數(shù);當n=4時,方程x2-4x+4=0的兩根相等且為2,是整數(shù).- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關 鍵 詞:
- 2019-2020年高考數(shù)學總復習 第一章1.2 命題及其關系、充分條件與必要條件教案 北師大版 2019 2020 年高 數(shù)學 復習 第一章 1.2 命題 及其 關系 充分 條件 必要條件 教案 北師大
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://m.jqnhouse.com/p-2834210.html