窗戶(hù)鎖扣的沖孔彎曲復(fù)合模模具設(shè)計(jì)-沖壓模具含14張CAD圖
窗戶(hù)鎖扣的沖孔彎曲復(fù)合模模具設(shè)計(jì)-沖壓模具含14張CAD圖,窗戶(hù),沖孔,彎曲,曲折,復(fù)合,模具設(shè)計(jì),沖壓,模具,14,cad
XX
機(jī)械加工工藝過(guò)程卡片
材料
45鋼
毛坯種類(lèi)
方料
零件名稱(chēng)
凸凹模
工 序
工 序 內(nèi) 容
工 種
機(jī)床和型號(hào)
夾 具
刀 具
量 具
工 時(shí)
10
鍛造毛胚
熱處理
20
調(diào)制
熱處理
30
銑外輪廓
銑
X52K立式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
5min
40
鉆螺紋孔
鉆
Z2390鉆床
專(zhuān)用夾具
鉆頭
游標(biāo)卡尺
1min
50
擴(kuò)螺紋孔
擴(kuò)
Z2390鉆床
專(zhuān)用夾具
擴(kuò)刀
游標(biāo)卡尺
1min
60
攻螺紋
攻
Z2390鉆床
專(zhuān)用夾具
螺紋刀
游標(biāo)卡尺
0.5min
70
粗銑內(nèi)槽
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
1min
80
精銑內(nèi)槽
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
1.5min
90
粗鏜內(nèi)孔
鏜
T68鏜床
專(zhuān)用夾具
鏜刀
游標(biāo)卡尺
2.5min
100
精鏜內(nèi)孔
鏜
T68鏜床
專(zhuān)用夾具
鏜刀
游標(biāo)卡尺
4min
班 級(jí)
機(jī)制143
學(xué)號(hào)
14406309
姓名
高浩
指導(dǎo)老師
湯志鵬
日 期
2018/6/1
共 10 頁(yè)
第 1 頁(yè)
附錄D.加工工藝過(guò)程卡片
XX
機(jī)械加工工藝過(guò)程卡片
材料
45鋼
毛坯種類(lèi)
方料
零件名稱(chēng)
落料
凹模
工 序
工 序 內(nèi) 容
工 種
機(jī)床和型號(hào)
夾 具
刀 具
量 具
工 時(shí)
10
鍛造毛胚
熱處理
20
調(diào)制
熱處理
30
銑外輪廓
銑
X52K立式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
5min
40
鉆通孔
鉆
Z2390鉆床
專(zhuān)用夾具
鉆頭
游標(biāo)卡尺
1min
50
擴(kuò)通孔
擴(kuò)
Z2390鉆床
專(zhuān)用夾具
擴(kuò)刀
游標(biāo)卡尺
1min
60
鉸通孔
鉸
J2130鉸床
專(zhuān)用夾具
鉸刀
游標(biāo)卡尺
0.5min
70
鉆螺紋孔
鉆
Z2390鉆床
專(zhuān)用夾具
鉆頭
游標(biāo)卡尺
1min
80
擴(kuò)螺紋孔
擴(kuò)
Z2390鉆床
專(zhuān)用夾具
擴(kuò)刀
游標(biāo)卡尺
1min
90
攻螺紋
攻
Z2390鉆床
專(zhuān)用夾具
螺紋刀
游標(biāo)卡尺
0.5min
100
銑內(nèi)槽
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
4min
110
粗銑中心方孔
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
1.5min
120
精銑中心方孔
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
2min
130
鉆通孔
鉆
Z2390鉆床
專(zhuān)用夾具
鉆頭
游標(biāo)卡尺
1min
140
擴(kuò)通孔
擴(kuò)
Z2390鉆床
專(zhuān)用夾具
擴(kuò)刀
游標(biāo)卡尺
1min
150
鉸通孔
鉸
J2130鉸床
專(zhuān)用夾具
鉸刀
游標(biāo)卡尺
0.5min
班 級(jí)
機(jī)制143
學(xué)號(hào)
14406309
姓名
高浩
指導(dǎo)老師
湯志鵬
日 期
2018/6/1
共 10 頁(yè)
第 2 頁(yè)
XX
機(jī)械加工工藝過(guò)程卡片
材料
45鋼
毛坯種類(lèi)
方料
零件名稱(chēng)
沖孔彎曲凸凸凹模
工 序
工 序 內(nèi) 容
工 種
機(jī)床和型號(hào)
夾 具
刀 具
量 具
工 時(shí)
10
鍛造毛胚
熱處理
20
調(diào)制
熱處理
30
粗銑外輪廓
銑
X52K立式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
5min
40
精銑外輪廓
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
6min
50
粗、精銑階梯
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
3min
60
粗、精銑內(nèi)凹槽
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
4min
班 級(jí)
機(jī)制143
學(xué)號(hào)
14406309
姓名
高浩
指導(dǎo)老師
湯志鵬
日 期
2018/6/1
共 10 頁(yè)
第 3 頁(yè)
XX
機(jī)械加工工藝過(guò)程卡片
材料
45鋼
毛坯種類(lèi)
棒料
零件名稱(chēng)
打料桿
工 序
工 序 內(nèi) 容
工 種
機(jī)床和型號(hào)
夾 具
刀 具
量 具
工 時(shí)
10
鍛造毛胚
熱處理
20
調(diào)制
熱處理
30
車(chē)端面
車(chē)
CKD6140數(shù)控車(chē)床
三爪卡盤(pán)
車(chē)刀
游標(biāo)卡尺
0.5min
40
粗車(chē)外圓
車(chē)
CKD6140數(shù)控車(chē)床
三爪卡盤(pán)
車(chē)刀
游標(biāo)卡尺
1min
50
精車(chē)外圓,倒角
車(chē)
CKD6140數(shù)控車(chē)床
三爪卡盤(pán)
車(chē)刀
游標(biāo)卡尺
1.5min
60
車(chē)退刀槽
車(chē)
CKD6140數(shù)控車(chē)床
三爪卡盤(pán)
車(chē)刀
游標(biāo)卡尺
0.5min
70
車(chē)M5外螺紋
車(chē)
CKD6140數(shù)控車(chē)床
三爪卡盤(pán)
車(chē)刀
游標(biāo)卡尺
1min
班 級(jí)
機(jī)制143
學(xué)號(hào)
14406309
姓名
高浩
指導(dǎo)老師
湯志鵬
日 期
2018/6/1
共 10 頁(yè)
第4 頁(yè)
XX
機(jī)械加工工藝過(guò)程卡片
材料
45鋼
毛坯種類(lèi)
方料
零件名稱(chēng)
墊板
工 序
工 序 內(nèi) 容
工 種
機(jī)床和型號(hào)
夾 具
刀 具
量 具
工 時(shí)
10
鍛造毛胚
熱處理
20
調(diào)制
熱處理
30
銑外輪廓
銑
X52K立式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
3min
40
粗銑上下平面
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
2min
50
精銑上下平面
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
2.5min
60
鉆螺紋孔
鉆
Z2390鉆床
專(zhuān)用夾具
鉆頭
游標(biāo)卡尺
1min
70
擴(kuò)螺紋孔
擴(kuò)
Z2390鉆床
專(zhuān)用夾具
擴(kuò)刀
游標(biāo)卡尺
1min
80
攻螺紋
攻
Z2390鉆床
專(zhuān)用夾具
螺紋刀
游標(biāo)卡尺
0.5min
90
鉆通孔
鉆
Z2390鉆床
專(zhuān)用夾具
鉆頭
游標(biāo)卡尺
1min
100
擴(kuò)通孔
擴(kuò)
Z2390鉆床
專(zhuān)用夾具
鉆頭
游標(biāo)卡尺
1.5min
110
鉸通孔
鉸
J2130鉸床
專(zhuān)用夾具
鉸刀
游標(biāo)卡尺
0.5min
120
鉆通孔
鉆
Z2390鉆床
專(zhuān)用夾具
鉆頭
游標(biāo)卡尺
1min
130
擴(kuò)通孔
擴(kuò)
Z2390鉆床
專(zhuān)用夾具
鉆頭
游標(biāo)卡尺
0.5min
140
鉸通孔
鉸
J2130鉸床
專(zhuān)用夾具
鉸刀
游標(biāo)卡尺
0.5min
班 級(jí)
機(jī)制143
學(xué)號(hào)
14406309
姓名
高浩
指導(dǎo)老師
湯志鵬
日 期
2018/6/1
共 10 頁(yè)
第5 頁(yè)
XX
機(jī)械加工工藝過(guò)程卡片
材料
45鋼
毛坯種類(lèi)
方料
零件名稱(chēng)
滑塊
工 序
工 序 內(nèi) 容
工 種
機(jī)床和型號(hào)
夾 具
刀 具
量 具
工 時(shí)
10
鍛造毛胚
熱處理
20
調(diào)制
熱處理
30
銑外輪廓
銑
X52K立式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
5min
40
鉆通孔
鉆
Z2390鉆床
專(zhuān)用夾具
鉆頭
游標(biāo)卡尺
1min
50
擴(kuò)通孔
擴(kuò)
Z2390鉆床
專(zhuān)用夾具
擴(kuò)刀
游標(biāo)卡尺
1min
60
鉸通孔
鉸
J2130鉸床
專(zhuān)用夾具
鉸刀
游標(biāo)卡尺
0.5min
70
銑沉孔
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
1min
80
銑沉孔
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
1.5min
90
粗鏜內(nèi)孔
鏜
T68鏜床
專(zhuān)用夾具
鏜刀
游標(biāo)卡尺
2.5min
100
精鏜內(nèi)孔
鏜
T68鏜床
專(zhuān)用夾具
鏜刀
游標(biāo)卡尺
4min
班 級(jí)
機(jī)制143
學(xué)號(hào)
14406309
姓名
高浩
指導(dǎo)老師
湯志鵬
日 期
2018/6/1
共 10 頁(yè)
第6 頁(yè)
XX
機(jī)械加工工藝過(guò)程卡片
材料
45鋼
毛坯種類(lèi)
方料
零件名稱(chēng)
活動(dòng)凸模
工 序
工 序 內(nèi) 容
工 種
機(jī)床和型號(hào)
夾 具
刀 具
量 具
工 時(shí)
10
鍛造毛胚
熱處理
20
調(diào)制
熱處理
30
銑外輪廓
銑
X52K立式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
5min
40
鉆螺紋孔
鉆
Z2390鉆床
專(zhuān)用夾具
鉆頭
游標(biāo)卡尺
1min
50
擴(kuò)螺紋孔
擴(kuò)
Z2390鉆床
專(zhuān)用夾具
擴(kuò)刀
游標(biāo)卡尺
1min
60
攻螺紋
攻
Z2390鉆床
專(zhuān)用夾具
螺紋刀
游標(biāo)卡尺
0.5min
70
粗銑斜面
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
1min
80
精銑斜面
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
1.5min
班 級(jí)
機(jī)制143
學(xué)號(hào)
14406309
姓名
高浩
指導(dǎo)老師
湯志鵬
日 期
2018/6/1
共 10 頁(yè)
第7 頁(yè)
XX
機(jī)械加工工藝過(guò)程卡片
材料
45鋼
毛坯種類(lèi)
方料
零件名稱(chēng)
凸模固定板
工 序
工 序 內(nèi) 容
工 種
機(jī)床和型號(hào)
夾 具
刀 具
量 具
工 時(shí)
10
鍛造毛胚
熱處理
20
調(diào)制
熱處理
30
銑外輪廓
銑
X52K立式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
3min
40
粗銑上下平面
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
2min
50
精銑上下平面
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
2.5min
60
粗銑上平面方孔
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
1min
70
精銑上平面方孔
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
1.5min
80
銑中心方孔
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
1min
90
鉆螺紋孔
鉆
Z2390鉆床
專(zhuān)用夾具
鉆頭
游標(biāo)卡尺
1min
100
擴(kuò)螺紋孔
擴(kuò)
Z2390鉆床
專(zhuān)用夾具
擴(kuò)刀
游標(biāo)卡尺
1min
110
攻螺紋
攻
Z2390鉆床
專(zhuān)用夾具
螺紋刀
游標(biāo)卡尺
0.5min
120
鉆通孔
鉆
Z2390鉆床
專(zhuān)用夾具
鉆頭
游標(biāo)卡尺
1min
130
擴(kuò)通孔
擴(kuò)
Z2390鉆床
專(zhuān)用夾具
鉆頭
游標(biāo)卡尺
1.5min
140
鉸通孔
鉸
J2130鉸床
專(zhuān)用夾具
鉸刀
游標(biāo)卡尺
0.5min
150
鉆通孔
鉆
Z2390鉆床
專(zhuān)用夾具
鉆頭
游標(biāo)卡尺
1min
160
擴(kuò)通孔
擴(kuò)
Z2390鉆床
專(zhuān)用夾具
鉆頭
游標(biāo)卡尺
0.5min
170
鉸通孔
鉸
J2130鉸床
專(zhuān)用夾具
鉸刀
游標(biāo)卡尺
0.5min
班 級(jí)
機(jī)制143
學(xué)號(hào)
14406309
姓名
高浩
指導(dǎo)老師
湯志鵬
日 期
2018/6/1
共 10 頁(yè)
第8 頁(yè)
XX
機(jī)械加工工藝過(guò)程卡片
材料
45鋼
毛坯種類(lèi)
方料
零件名稱(chēng)
卸料板
工 序
工 序 內(nèi) 容
工 種
機(jī)床和型號(hào)
夾 具
刀 具
量 具
工 時(shí)
10
鍛造毛胚
熱處理
20
調(diào)制
熱處理
30
銑外輪廓
銑
X52K立式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
3min
40
粗銑上下平面
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
2min
50
精銑上下平面
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
2.5min
60
鉆通孔
鉆
Z2390鉆床
專(zhuān)用夾具
鉆頭
游標(biāo)卡尺
1min
70
擴(kuò)通孔
擴(kuò)
Z2390鉆床
專(zhuān)用夾具
擴(kuò)刀
游標(biāo)卡尺
1min
80
鉸通孔
鉸
J2130鉸床
專(zhuān)用夾具
螺紋刀
游標(biāo)卡尺
0.5min
90
鉆通孔
鉆
Z2390鉆床
專(zhuān)用夾具
鉆頭
游標(biāo)卡尺
1min
100
擴(kuò)通孔
擴(kuò)
Z2390鉆床
專(zhuān)用夾具
鉆頭
游標(biāo)卡尺
1.5min
110
鉸通孔
鉸
J2130鉸床
專(zhuān)用夾具
鉸刀
游標(biāo)卡尺
0.5min
120
鉆通孔
鉆
Z2390鉆床
專(zhuān)用夾具
鉆頭
游標(biāo)卡尺
1min
130
擴(kuò)通孔
擴(kuò)
Z2390鉆床
專(zhuān)用夾具
鉆頭
游標(biāo)卡尺
0.5min
140
鉸通孔
鉸
J2130鉸床
專(zhuān)用夾具
鉸刀
游標(biāo)卡尺
0.5min
150
銑槽
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
2min
班 級(jí)
機(jī)制143
學(xué)號(hào)
14406309
姓名
高浩
指導(dǎo)老師
湯志鵬
日 期
2018/6/1
共 10 頁(yè)
第9 頁(yè)
XX
機(jī)械加工工藝過(guò)程卡片
材料
45鋼
毛坯種類(lèi)
方料
零件名稱(chēng)
壓料板
工 序
工 序 內(nèi) 容
工 種
機(jī)床和型號(hào)
夾 具
刀 具
量 具
工 時(shí)
10
鍛造毛胚
熱處理
20
調(diào)制
熱處理
30
銑外輪廓
銑
X52K立式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
5min
40
鉆螺紋孔
鉆
Z2390鉆床
專(zhuān)用夾具
鉆頭
游標(biāo)卡尺
1min
50
擴(kuò)螺紋孔
擴(kuò)
Z2390鉆床
專(zhuān)用夾具
擴(kuò)刀
游標(biāo)卡尺
1min
60
攻螺紋
攻
Z2390鉆床
專(zhuān)用夾具
螺紋刀
游標(biāo)卡尺
0.5min
70
銑沉孔
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
4min
80
粗銑中心方孔
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
1.5min
90
精銑中心方孔
銑
X62W臥式銑床
專(zhuān)用夾具
銑刀
游標(biāo)卡尺
2min
班 級(jí)
機(jī)制143
學(xué)號(hào)
14406309
姓名
高浩
指導(dǎo)老師
湯志鵬
日 期
2018/6/1
共 10 頁(yè)
第10頁(yè)
第 50 頁(yè) 共 50 頁(yè)
外文題目 Die design method for thin plates by indirect rheo-casting process and effect of die cavity friction and punch speed on microstructures and mechanical properties
譯文題目 用間接流變鑄造工藝設(shè)計(jì)薄板的模具設(shè)計(jì)方法以及模腔摩擦和沖切速度對(duì)組織及性能的影響和機(jī)械特性
外文出處 Journal of Materials Processing Technology
摘要
題目:用間接流變鑄造工藝設(shè)計(jì)薄板的模具設(shè)計(jì)方法以及模腔摩擦和沖切速度對(duì)組織及性能的影響和機(jī)械特性
作者: Chul Kyu Jina, Chang Hyun Janga, Chung Gil Kang
以A 356半固態(tài)合金為原料,采用間接流變鑄造工藝,采用電磁攪拌器和無(wú)電磁攪拌器,制備了厚度為1.2 mm的薄板。薄模腔 R的形成是用UID分析軟件巖漿設(shè)計(jì)的。制備了固體質(zhì)量分?jǐn)?shù)為40%的半固態(tài)漿料,并將其注入200 t液壓機(jī)模具中。成形試驗(yàn)為p 對(duì)薄板進(jìn)行兩沖頭速度(30和300毫米/秒)和兩腔摩擦條件(MF = 0.4和MF = 0.9)。成形性能、力學(xué)性能和顯微組織進(jìn)行評(píng)價(jià), 泰德。用EMS獲得的半固態(tài)漿料含有Ne和球狀固體顆粒;不含EMS的半固態(tài)漿料則顯示出玫瑰花狀顆粒和較粗的球形固體顆粒。 在高摩擦(MF = 0.9),主要是?腔填充液相。在一個(gè)較高的穿孔率、薄板成形性和微觀(guān)結(jié)構(gòu)表現(xiàn)出更好的?NE甚至固體顆粒。 在石墨潤(rùn)滑(MF=0.9)腔中,沖壓速度為300 mm/s的薄板的拉伸強(qiáng)度和伸長(zhǎng)率分別為216 MPa和10%。這些值為57 MP。 A和5.5%分別比以30 mm/s的沖孔速度形成的薄板高。
2015 Elsevier公司保留所有權(quán)利。
關(guān)鍵詞:半固態(tài)漿料 間接流變鑄造 電磁攪拌薄板 A356合金 充填 模擬
1.簡(jiǎn)介
壓鑄過(guò)程中鋁是金屬液的高速?lài)娚?,?dǎo)致內(nèi)部缺陷,由于剩余的氣體或空氣中的熔融金屬,從而惡化或 這是力學(xué)性能。Niu等人(2000)發(fā)現(xiàn),在壓鑄過(guò)程中使用真空,可以顯著地減小鑄件中氣體孔隙率和氣孔尺寸。蒂伊 顯著提高材料的密度和力學(xué)性能,特別是抗拉強(qiáng)度和塑性。鍛造工藝限制了近凈成形性,減少了后處理。 生產(chǎn)效率和模具壽命,使環(huán)保生產(chǎn)成為不可能。擠壓鑄造是液態(tài)金屬在凝固過(guò)程?ED相對(duì)高的壓力下減少GA的形成 收縮孔隙度。然而,這個(gè)過(guò)程產(chǎn)生一個(gè)玫瑰花結(jié)和枝晶結(jié)構(gòu)(悅和查德威克,1996),并有模具壽命縮短、形狀復(fù)雜性有限、生產(chǎn)薄零件的缺陷、最大尺寸和重量有限(Ghomashchi和Vikhrov,2000年)。
Flemings等人(1976年)開(kāi)發(fā)了一種流變(半固態(tài))材料和流變鑄造工藝,以替代壓鑄和鍛造等金屬成形工藝。它們的過(guò)程產(chǎn)生一個(gè) 固體球體高度分散在液體中的漿料。Joly和Mehrabian(1976)表明,在一定體積分?jǐn)?shù)的固體中,漿料的粘度隨冷卻溫度的降低而降低。 提高剪切速率。流變成形的方法,這是在半固態(tài)材料進(jìn)行(即溫度的固體線(xiàn)以上但低于液體的一種),是一個(gè)解決方案 解決鑄造和成形過(guò)程中的問(wèn)題。在流變成型過(guò)程中,隨著溫度的降低,鋁液被攪拌,從而形成具有可控顆粒的半固態(tài)漿料。 N個(gè)尺寸,然后注入模具并與壓力機(jī)形成。Kapranos等人(2000年)描述了利用All鋁生產(chǎn)和評(píng)估高質(zhì)量觸變組分的過(guò)程。 公司表明,觸變成形顯然具有近凈成形能力。紀(jì)等。(2001)開(kāi)發(fā)出雙螺桿流變成型工藝和風(fēng)扇等。(2005)提出了一種流變壓鑄(RDC)的過(guò)程,直接使用液態(tài)鋁合金。他們的研究結(jié)果表明,RDC樣品已接近零孔隙度 D?NE和組織均勻在整個(gè)樣本在鑄態(tài)條件下。阿特金森(2005)總結(jié)了路線(xiàn)的球狀組織,半固態(tài)加工類(lèi)型的優(yōu)勢(shì) 這些方法的優(yōu)缺點(diǎn),背景流變學(xué),觸變性的數(shù)學(xué)理論,半固態(tài)合金漿料的瞬態(tài)行為,以及計(jì)算模型。
用于處理半固態(tài)金屬的流變成形或觸變形成的一個(gè)主要缺點(diǎn)是控制液體或固體段(即,固相和液相的分離或不均勻的)。 固相的分布)。當(dāng)半固態(tài)漿料進(jìn)入模具時(shí),材料會(huì)與腔體壁接觸.。這就導(dǎo)致了不均勻的不均勻的不均勻的OWS,導(dǎo)致固相的分離(主要a- 從液相中產(chǎn)生的Al粒子。Chen和Tsao(1997)提出了半固態(tài)變形機(jī)制,并根據(jù)現(xiàn)象學(xué)模型的變形預(yù)測(cè)了偏析現(xiàn)象??祪?T.Al.(2007)研究了改變注射速度對(duì)半固態(tài)壓鑄產(chǎn)品的球狀顯微組織和機(jī)械性能的影響。他們發(fā)現(xiàn)Differe 在有液體和無(wú)液體分離的樣品中,固體分率約為15~20%。薄板、固相和液相的更嚴(yán)重偏析,使他們 不同位置的R力學(xué)性能不均勻。由于半固態(tài)金屬加工的偏析和初始成形溫度低的問(wèn)題,目前還沒(méi)有研究。 目前,我們已經(jīng)完成了用流變成形工藝制造薄板的工作.
本研究采用間接流變鑄造工藝,彌補(bǔ)了間接擠壓鑄造的缺點(diǎn),生產(chǎn)了電動(dòng)汽車(chē)零部件及燃料用鋁薄板。 電池雙極板。薄板的間接流變鑄造工藝涉及薄模腔中的低澆注溫度。這使得材料很可能無(wú)法固定CA 從中心開(kāi)始完全和凝固,這將導(dǎo)致不完全成形。因此,本研究的目的是提供一種設(shè)計(jì)用于間接流變鑄造的模具的方法,該模具為APPRO 為薄板的形狀做準(zhǔn)備。利用軟件巖漿設(shè)計(jì)了一種適合于流變特性的柵形和超臨界流場(chǎng),使半固態(tài)漿料能夠進(jìn)入空腔。A 356合金 采用寬固液共存區(qū)作為半固態(tài)漿料。通過(guò)電磁電磁攪拌器的使用制作出?NE和球形固體顆粒的半固態(tài)漿料( 以控制A 356合金的晶粒尺寸。將半固態(tài)漿料注入安裝在200 t液壓機(jī)上的模具,形成薄板坯。形成薄板的實(shí)驗(yàn) 分析了兩沖頭速度和兩腔摩擦條件下的成形過(guò)程,并分析了沖頭速度和脆性對(duì)成形性、顯微組織和力學(xué)性能的影響。微絲 在不同的條件下,測(cè)定了形成的薄板試樣的組織和力學(xué)性能。
2. 實(shí)驗(yàn)步驟
2.1.半固態(tài)流動(dòng)模型
半固態(tài)材料的半固態(tài)模型表明粘滯率與剪切速率有關(guān).。半固態(tài)材料的粘度隨剪切速率的增加而急劇下降,但其粘度幾乎不變。 在低剪切速率粘度。為了描述粘度在高剪切速率區(qū)的剪切速率的依賴(lài)關(guān)系,使用了一個(gè)經(jīng)驗(yàn)公式,這個(gè)公式稱(chēng)為冪律公式(Kim和Kang,2000年;Atkinson,2005年):
其中,σ為剪切應(yīng)力,μ為剪切速率,K為冪律,n為冪律指數(shù)。當(dāng)n=1時(shí),材料變成牛頓流動(dòng),其粘度y與K.Kim相同。 對(duì)于牛頓模型,Kang(2000)設(shè)n=1。對(duì)于半固態(tài)的ostwald-de waele uid模型,實(shí)驗(yàn)得到的n值為0.48~0.45(剪切速率=3-2)。 500s?1)。將其應(yīng)用于MAMASOFT中,用于比較裸片內(nèi)的固定分析結(jié)果。他們的結(jié)果表明,奧斯特瓦爾德–德瓦勒液體模型與經(jīng)驗(yàn)一致 -鱟結(jié)果。鑄件的粘性行為模型采用奧斯瓦爾德–de Waele模型,表現(xiàn)為半固態(tài)材料的非牛頓體通過(guò)電力法:
其中Y是表觀(guān)動(dòng)態(tài)粘度,M為奧斯特瓦爾德-德瓦萊系數(shù),N為奧斯特瓦爾德-德瓦萊指數(shù),P為密度。
MAGMASOFT的控制方程有:控制體積法、連續(xù)方程、Navier-Stokes方程、能量方程和體積法(VOF)。這些都是一樣的 用于液體。
2.2.模具設(shè)計(jì)的模擬準(zhǔn)備
當(dāng)半固態(tài)漿料被壓縮時(shí),液相向漿料表面移動(dòng),從而導(dǎo)致表面裂紋。固相和液相的空隙率和偏析變得明顯。 在受壓試樣的一側(cè)更為嚴(yán)重。搜索引擎優(yōu)化等。(2002)進(jìn)行壓縮實(shí)驗(yàn),研究半固態(tài)材料在不同加工條件下的變形行為。 儀表,如試件尺寸和應(yīng)變率。他們建議,對(duì)薄板的流變模鍛模具的設(shè)計(jì)必須為間接式結(jié)構(gòu)。用半溶膠形成薄板 設(shè)計(jì)了一種間接流變鑄造模具,該模具采用沖頭將半固態(tài)漿料壓入封閉式上、下模中進(jìn)行壓邊。因?yàn)檫@個(gè)結(jié)構(gòu)是相似的 對(duì)壓鑄工藝,澆注系統(tǒng)的設(shè)計(jì)和?流是一個(gè)重要的變量。分析了半固態(tài)漿料的行為,它通過(guò)門(mén)和?LLS CAV性是 薄板設(shè)計(jì)的主要因素。seo等人(2007)分析了澆口形狀如何影響半固態(tài)漿料的液體偏析,并得出結(jié)論:寬的澆口會(huì)使液滴更像。 y按順序排列,液體分離不太可能形成。
為了研究半固態(tài)漿料在不同澆口形狀下的吸脹行為,對(duì)不同澆口形狀的薄板腔(150 mm,150 mm,1.2 mm)進(jìn)行了數(shù)值模擬。模擬結(jié)果是 采用A356觸變模塊進(jìn)行(Ostwald–de Waele模型)的巖漿。表1列出了在模擬中使用的條件和換熱系數(shù)系數(shù)。
表 1
仿真參數(shù)
參數(shù) 值
熔融金屬 材料 A356 (TL) 617 ?C Solidus temperatu
熔融金屬 材料 A356
液相線(xiàn)溫度(TL) 617 ?C
固相線(xiàn)溫度(TS) 547 ?C
初始溫度(TM) 596 ?C
潛伏熱 430 kJ/kg
模具 材料 SKD 61
初始溫度(TD) 300 ?C
傳熱系數(shù) 材料和模具 7000 W/m2 K
沖模模具 1000 W/m2 K
表 2 A356鋁合金的化學(xué)成分(質(zhì)量分?jǐn)?shù) %)
Si
Mg
Ti
Fe
Ni
Mn
Zn
Pb
Al
7.08
0.35
0.17
0.08
0.07
0.01
0.01
0.01
Bal.
2.3.半固態(tài)漿料的制備
A356合金用于半固態(tài)漿料,EMS用于控制固體顆粒的尺寸。因?yàn)锳356合金在兩相糊狀區(qū)具有很強(qiáng)的流動(dòng)性,并能增強(qiáng)機(jī)械強(qiáng)度 具有熱處理的機(jī)械強(qiáng)度,用于汽車(chē)零部件,如指節(jié)、臂和外殼,需要可靠性。特別是A356的力學(xué)性能密切相關(guān) o初生粒子的大小、二次枝晶臂間距(SDAS)、Si顆粒在共晶基體中的形狀和分布。表2列出A 356合金的化學(xué)成分。菲 G. 1顯示固相分?jǐn)?shù)對(duì)A356合金的溫度。利用差示掃描calorime測(cè)定了在不同溫度下A356合金的固相分?jǐn)?shù) -嘗試(DSC)曲線(xiàn)。對(duì)A356合金的液相線(xiàn)和固相線(xiàn)溫度分別為617和547?C,分別為溫度596 C?固相分?jǐn)?shù)為40%。
圖2(a)示出了本研究中使用的EMS的照片。EMS由3個(gè)相(P、R、S)和3個(gè)帶線(xiàn)圈的
圖1.固相分?jǐn)?shù)對(duì)A356合金的溫度
圖2.電磁攪拌器:(A)真實(shí)圖片和(B)示意圖
圖3.三位磁感應(yīng)密度隨攪拌電流的變化
極組成與芯垂直。通過(guò)堆積幾個(gè)0.35mm厚的板來(lái)制造用于確定線(xiàn)圈位置的芯。芯由240個(gè)單位疊片組成的Si-Zn合金板和線(xiàn)圈WA組成 繞著核心的傷口。每個(gè)階段被放置在一個(gè)圓柱形的方向,如圖2(b),讓目前的移動(dòng)與線(xiàn)圈和電磁力是在圓柱產(chǎn)生 攪拌熔化的金屬。用高斯表測(cè)量了電磁攪拌系統(tǒng)在三個(gè)位置的電磁力。圖3顯示了測(cè)量到的磁感應(yīng)密度的變化。 在EMS內(nèi)的三個(gè)位置作為電流的函數(shù)。測(cè)量的磁感應(yīng)強(qiáng)度與每個(gè)位置上電流的增加成正比。在電流為60 A時(shí),MAG 在上、中、下位的誘導(dǎo)密度分別為640、680和1120 G。攪拌力對(duì)鋁液中剪切應(yīng)力的影響控制了鋁的生長(zhǎng)。 固相過(guò)程中形成的樹(shù)枝狀臂。從而控制了固相的晶粒尺寸,使晶粒呈球形。
圖4示出了制備半固態(tài)漿料的工藝.。首先,將杯子插入EMS中,然后用一個(gè)鋼包從熔爐中舀出熔化的金屬。然后,攪拌開(kāi)始于電爐。 在將熔融金屬倒入EMS杯中時(shí)施加租金。熔煉金屬在爐內(nèi)溫度為680℃,溫度為635℃。攪拌至杯內(nèi)金屬熔融溫度降至596℃,即固相分?jǐn)?shù)(Fs)為40%。大約需要78秒的攪拌時(shí)間。 達(dá)到這個(gè)水平。攪拌實(shí)驗(yàn)的變量是攪拌開(kāi)始時(shí)的金屬溫度、攪拌電流(A)和攪拌時(shí)間(t)。BAE等。(2007)s 當(dāng)攪拌開(kāi)始時(shí)熔融金屬溫度低于655℃,攪拌電流為60A,攪拌時(shí)間為60秒時(shí),可形成牢固且球狀的固體顆粒。 用A 356進(jìn)行電磁攪拌實(shí)驗(yàn)。因此,如表3所示,在本實(shí)驗(yàn)中,金屬熔體溫度為620℃,攪拌電流為60A。
不銹鋼304用于EMS杯。不銹鋼是非磁性的,因?yàn)樗菉W氏體,因此它不受電磁力的影響。此外,不銹鋼304不變形。 room 房屋即使在700℃以上的溫度下也是如此。Seo等人(2002)執(zhí)行了在半固態(tài)漿料上進(jìn)行了壓縮實(shí)驗(yàn),并考察了鋼坯高度和直徑的變化對(duì)液體沉降的影響。他們的結(jié)論是,一個(gè)較大的鋼坯直徑使它成為l。 極有可能出現(xiàn)孔隙和液體偏析。此外,較大的坯長(zhǎng)增加了空隙的內(nèi)容。因此,在薄板成形所需的材料數(shù)量之后, 將EMS杯設(shè)計(jì)為具有與模具套筒(60mm)的內(nèi)徑相似的直徑和更低的高度。圖5(a)分別說(shuō)明EMS杯和實(shí)際杯的形狀尺寸。圖5(C)示出了半固態(tài)漿料.。
圖4.EMS制造工藝與已加工球形固體顆粒的半固態(tài)漿料
參數(shù) 值
熔融金屬 材料 A356 (TL) 617 ?C Solidus temperatu
攪拌法 電磁攪拌
攪拌電流(A) 60A
啟動(dòng)時(shí)的溫度 620 ?C
攪拌(TS)
零度溫度 596 ?C/40%
攪拌(TF)/固體
分?jǐn)?shù)(Fs)
攪拌時(shí)間(T) 60s
表 3 半固態(tài)漿料制備的實(shí)驗(yàn)條件
圖5.攪拌杯和漿料的幾何形狀:(A)杯的截面 (B)杯的照片 (C)半固態(tài)漿料的照片
杯子厚2毫米,長(zhǎng)100毫米。由于攪拌過(guò)程中熔融金屬的旋轉(zhuǎn)是由于攪拌力的作用,所以金屬熔體的旋轉(zhuǎn)會(huì)使攪拌過(guò)程中的金屬發(fā)生旋轉(zhuǎn)。 二杯如果杯填進(jìn)。因此,世界杯是填充到90毫米的高度與熔融金屬。對(duì)所制備的半固態(tài)漿料的體積是165597立方毫米,和體積 薄板模型計(jì)算軟件使用UG NX6軟件在功能空間?為161304 mm3.。半固態(tài)漿料的數(shù)量是足夠?qū)⒈∏弧?
2.4.間接流變鑄造法
將EMS實(shí)驗(yàn)生產(chǎn)的半固態(tài)漿料(FS=40%)注入200T液壓機(jī)中的模具中,進(jìn)行薄板成形實(shí)驗(yàn)。圖6示出了200噸液壓機(jī),其 已安裝的薄板模具。表4和圖7分別給出了薄板成形過(guò)程的實(shí)驗(yàn)條件和該工藝的總圖。模具溫度w 保持在280~290攝氏度,并配有墨盒加熱器。沖頭的壓力為200 MPa,采用兩種速度:30 mm/s和300 mm/s。將半固態(tài)漿料注入模具內(nèi)。 壓力保持5秒。為了確保成形板不會(huì)被彈射銷(xiāo)變形,模具被打開(kāi)10s,以便進(jìn)行一些強(qiáng)化。然后, 把ATE從模具中取出,立即在水中冷卻。
圖6.200噸液壓壓力機(jī)安裝用于薄板制造的模具
參數(shù) 值
熔融金屬 材料 A356 (TL) 617 ?C Solidus temperatu
溫度和固體分?jǐn)?shù) 596 ?C and 40%
半固態(tài)漿料
模具溫度 280-290 ?C
壓模壓力(PP) 200Mpa
壓力機(jī)沖壓速度(Vp) 30 and 300 mm/s
模具腔潤(rùn)滑劑 石墨
條件 1 VP=300 mm/s,無(wú)潤(rùn)滑劑(MF=0.9)
條件 2 VP=300 mm/s,石墨潤(rùn)滑劑(MF=0.4)
條件 3 VP=30 mm/s,石墨潤(rùn)滑劑(MF=0.4)
表 4 半固態(tài)漿料間接流變鑄造的實(shí)驗(yàn)條件
Pinsky等人(1984)在半固態(tài)Sn-Pb壓縮和環(huán)壓縮實(shí)驗(yàn)中發(fā)現(xiàn),在半固態(tài)Sn-Pb壓縮和環(huán)壓縮實(shí)驗(yàn)中,固相和液相的偏析隨著模具與材料之間的摩擦而增加。 合金??档取#?999)進(jìn)行壓縮等實(shí)驗(yàn)的半固態(tài)材料在不同應(yīng)變率得出固相在高應(yīng)變率分布均勻,其中樂(lè) 廣告較少的液體分離。因此,三形成實(shí)驗(yàn)進(jìn)行分析的成形性能,微觀(guān)結(jié)構(gòu),和兩摩擦和機(jī)械性能之間的顯示條件 Ty和半固體料漿和兩個(gè)沖頭速度。在空腔內(nèi)噴涂石墨潤(rùn)滑劑以形成具有兩個(gè)沖頭速度的成形實(shí)驗(yàn),并且用非潤(rùn)滑的方法進(jìn)行實(shí)驗(yàn)。 腔體分析不同相態(tài)摩擦?xí)r固、液相的偏析及缺陷。實(shí)驗(yàn)條件1是一個(gè)非潤(rùn)滑腔(MF = 0.9)與沖頭SP。 300 mm/s的EED。條件2和3為石墨潤(rùn)滑腔(MF=0.4),沖壓速度分別為300 mm/s和30 mm/s。表4列出了這些條件。五在每個(gè)實(shí)驗(yàn)條件下進(jìn)行測(cè)試,以產(chǎn)生總共15個(gè)薄板樣品。
圖7.間接流變鑄造過(guò)程示意圖:(a)輸入半固態(tài)漿料,(b)和(c)噴射成形
2.5.顯微組織和力學(xué)性能測(cè)定
使用圖像分析儀測(cè)量顯微結(jié)構(gòu)中固體顆粒的尺寸和球性。等價(jià)的直徑(平均大?。┑墓腆w顆粒的?內(nèi)德Eq.(3)的下方,和形狀因子(球狀)代表顆粒的圓度,是?內(nèi)德Eq.(4)。當(dāng)r=1時(shí),粒子 具有完美的圓形形狀;對(duì)于較少的球狀粒子,r>1因?yàn)?
它的周長(zhǎng)比相同面積的圓形粒子長(zhǎng)。
這里D、R、A和P分別是小球的直徑、半徑、面積和周長(zhǎng)。
圖8.模具?填充半固態(tài)漿料的行為根據(jù)澆口形狀:(a)和(b)直澆口扇形澆口
圖9.(a)風(fēng)機(jī)大門(mén)系統(tǒng)(單位:mm)和(b)料齡的詳細(xì)設(shè)計(jì)
為了分析成形薄板的力學(xué)性能,對(duì)不同型腔位置的試件進(jìn)行了拉伸試驗(yàn)。拉伸試樣在25米高度。 M量規(guī)長(zhǎng)度和6mm寬度;根據(jù)ASTME8M規(guī)范(子尺寸SPEI-MEN)制造。樣品被設(shè)置為與樣品薄板一樣厚。對(duì)于時(shí)態(tài) 樂(lè)的測(cè)試,使用了一個(gè)25-t MTS和應(yīng)變率被設(shè)定為1毫米/分鐘。為了精確測(cè)量伸長(zhǎng)率,使用了一種伸長(zhǎng)計(jì),這是一種接觸鏡面的方法。用拉伸試驗(yàn)試樣測(cè)量維氏硬度。 S.對(duì)每個(gè)樣品分別進(jìn)行三次拉伸和硬度測(cè)試。結(jié)果取平均值,最大值和最小值用誤差棒表示。
圖10.模具會(huì)有兩個(gè)在流動(dòng)側(cè)模型的半固態(tài)漿料的行為:(a)速度和(b)溫度
3.研究結(jié)果與討論
3.1 模具設(shè)計(jì)仿真
為了設(shè)計(jì)一個(gè)薄板的澆口形狀,餅干被設(shè)置為60毫米,相當(dāng)于套筒的內(nèi)徑。圖8(a)顯示?填充在模具中的半固態(tài)漿料性能的CA 有一個(gè)直門(mén)。模擬結(jié)果表明,由于漿液的粘度,漿料沿閘門(mén)的形狀呈直線(xiàn)狀排列??涨坏膬蓚?cè)被 ?UID的背?哎喲,達(dá)到空腔結(jié)束返回。這可能會(huì)導(dǎo)致不完整的?填充在CAV的兩面性。因此,門(mén)擴(kuò)大到風(fēng)扇類(lèi)型,使材料公司。 當(dāng)穿過(guò)大門(mén)后,整個(gè)腔就會(huì)上升??s短了澆口長(zhǎng)度,避免了半固態(tài)漿料在冷卻過(guò)程中在腔內(nèi)凝固。圖8(B)示出e 腔的整個(gè)寬度?填充為原料通過(guò)大門(mén)。
在選定了一個(gè)扇形,具體?C的細(xì)節(jié)設(shè)計(jì)的門(mén)。如圖9中的澆口截面,門(mén)是18毫米厚的部分連接到餅干然后縮小 英語(yǔ)字母表中的第四個(gè)字母靠近空腔。輕松除去形成的薄板,5?和6?梯度設(shè)置為餅干的頂部和底部,分別地,沿分型線(xiàn)的模具。每個(gè)角落都圓了。當(dāng)熔化的金屬冷卻到半固態(tài)漿料時(shí),上部 部分漿料表面狀態(tài)差,是由于外部空氣的影響,由于傳熱的緣故,漿料的表面比中心低3℃。因?yàn)镾EM的上部 i-solid漿料注入模具?RST,泥漿的可憐的上部可能?流入腔,導(dǎo)致不完整的?填充??紤]到這種可能性,大門(mén)位于4毫米高于餅干的底部(即在半固態(tài)漿料的上部),如圖9所示(一)。上部(進(jìn)一步固化)漿料不對(duì)空腔進(jìn)行分選,而是放置在半固態(tài)漿料的上部區(qū)域。圖9(B)示出了材料的年齡結(jié)果;初始材料沒(méi)有進(jìn)入腔體。墊子 要求年齡是指經(jīng)過(guò)的時(shí)間在?OW材料;更長(zhǎng)的時(shí)間表示?OW較早的材料。
扇形閘門(mén)導(dǎo)致材料?將整個(gè)腔。在洞邊的?流量也增加了,如圖8(b)。因?yàn)樵诙催叺?流到達(dá)終點(diǎn) 在型腔中,氣體或空氣不能通過(guò)模具的分型線(xiàn)釋放,而是鎖定在型腔內(nèi)。成形樣品 表面可以在腔端粗糙因?yàn)榭紫兜热毕荩瑲饽?,?流痕。此外,不均勻的?填充速度可以使固相和液相分離。這個(gè) 因此,在空腔中獲得均勻的?流量,二?OWS在腔體的側(cè)面設(shè)計(jì)。圖10顯示了一個(gè)模型,兩個(gè)?OWS放置在兩側(cè)的仿真結(jié)果 腔。在腔體的側(cè)?快流是導(dǎo)致在?OWS,空腔填充均勻?整體。然而,當(dāng)材料通過(guò)空腔的中心,速度和溫度。 真的大幅度下降。后腔完全?填充,在腔體的一端溫度低于585?C.這些可能導(dǎo)致不完全?填充在空腔的一端在實(shí)際成形實(shí)驗(yàn),這可能會(huì)導(dǎo)致例如表面裂紋缺陷的鑄件和毛孔。因?yàn)槟悄?ES在回火溫度低于585?C在腔體的一端也可以帶著自己?去除材料的部分,?已經(jīng)超過(guò)?OWS被放置在腔端,為如圖11所示。在低于585℃下凝固的材料部分在腔端處固定了過(guò)度彎曲,且腔內(nèi)的溫度保持在590℃。
圖11. 半固態(tài)漿料的模壓性能(溫度),其側(cè)有兩個(gè)以上的溢值,最后有五個(gè)溢出
圖12.在腔模型壓力分布:(A)兩個(gè)溢出在端側(cè)和五個(gè)溢出在結(jié)尾、(B)四個(gè)溢出在端側(cè)和五個(gè)溢出已經(jīng)結(jié)束
圖13.形成半固態(tài)漿料薄板間接流變鑄造模具:(a)房模腔的照片和(b)模具結(jié)構(gòu)
圖12(a)表示空腔內(nèi)的壓力分布。壓力分布明顯不均勻。側(cè)面的壓力約為大氣壓(1013mbar)。應(yīng)用壓力——確定WA S消失,一些區(qū)域承受超過(guò)10,000毫巴的壓力。在腔端處的血管過(guò)流受到大氣壓力。未轉(zhuǎn)移所施加的壓力該結(jié)果表明,在實(shí)際成形試驗(yàn)中,在過(guò)道入口處可能出現(xiàn)不完全的固定。為了解決這個(gè)問(wèn)題, 如圖12(b)所示,在側(cè)面添加兩個(gè)溢流道。在具有兩個(gè)添加過(guò)流的腔室上均勻地分布超過(guò)4000毫巴的壓力。根據(jù)仿真結(jié)果,分別設(shè)計(jì)了如圖13(a)和(b)所示的空腔形狀和模具結(jié)構(gòu)。因?yàn)槟>叩臏囟葢?yīng)該保持在280-290℃。成形實(shí)驗(yàn),三和四Ф20毫米孔加工上、下模,分別為筒式加熱器孔。然后,Ф1.8毫米孔在上B加工中心 為了測(cè)量和控制模具溫度,插入了一個(gè)K型熱電偶。為便于在成形后取出薄板試樣,為噴射器PI機(jī)加工了Ф14mm孔。 NS:一個(gè)在套筒,6個(gè)在腔中,一個(gè)用于每個(gè)過(guò)流。用于壓縮半固體漿料的沖頭的直徑為60mm,其與套筒的內(nèi)徑相同。本發(fā)明的實(shí)施例 沖頭的上部有100毫米的直徑,以防止在反復(fù)試驗(yàn)中沖頭發(fā)生屈曲。防止鋁合金附著在模具表面,提高表面硬度 通過(guò)氮化處理鈰硬度、沖頭、套筒和腔。
圖14.不含EMS的半固態(tài)漿料(A)和(B)的顯微結(jié)構(gòu)
圖15.具有和沒(méi)有EMS的半固體漿料中固體顆粒的體積分?jǐn)?shù)、當(dāng)量直徑和圓度
圖16.用不同沖孔速度(VP)和空腔摩擦狀態(tài)制作的薄板樣品:(A)30 mm/s,不含潤(rùn)滑劑;(B)300 mm/s,石墨潤(rùn)滑劑;和30mm/s石墨潤(rùn)滑劑
3.2.半固態(tài)漿料的微觀(guān)結(jié)構(gòu)
在薄板成形試驗(yàn)前,需要在水中立即冷卻半固態(tài)漿料,以分析其微觀(guān)結(jié)構(gòu)。圖14顯示了半固態(tài)的顯微結(jié)構(gòu)。 用EMS攪拌,不攪拌,冷卻到596℃。顯微組織為固相初生a-Al,固-l為液相共晶相。 伊奎德?tīng)顟B(tài)。在攪拌的微結(jié)構(gòu)中,由于控制了顆粒的不均勻生長(zhǎng),在半固態(tài)漿料的中心均勻分布著ne和球狀固體顆粒。 (圖14(a))。在半固態(tài)漿料的兩側(cè),杯面約3?C下的中心由于攪拌過(guò)程中的傳熱。因此,固體顆粒比T 他在中心。在不攪拌的情況下,大量的玫瑰花結(jié)顆粒、樹(shù)枝晶和一些Ne球狀顆粒被分布在一起(圖14(B))。熔化的金屬生長(zhǎng)成樹(shù)枝狀。 結(jié)構(gòu)直到冷卻到596℃。材料周?chē)木Я3叽巛^粗。
圖15顯示了半固態(tài)漿料中的固體顆粒的體積分?jǐn)?shù)、當(dāng)量直徑和圓度。在中心,當(dāng)量直徑和圓度。 半固態(tài)漿料的固粒率分別為75 m和1.5 m.。無(wú)電磁攪拌的半固態(tài)漿料的固體顆粒分別為110μm和2.3μm.。上 半固態(tài)漿料的邊、等效直徑和圓度分別為82 m和1.65 m.。這些半固態(tài)漿料中的固體顆粒沒(méi)有EMS 119μm和3,分別。半固態(tài)漿料的分散度為45%,中部為41%。半固態(tài)漿料沒(méi)有EMS體積分?jǐn)?shù) 中間43%個(gè),兩邊40%個(gè)。
結(jié)果證明,使用EMS可以獲得具有固定和球狀固體顆粒的半固體漿料。如果將具有不均勻和粗糙顆粒的半固體漿料注入模具和T中, 沖擊壓縮的母雞,可能會(huì)由于不良的干燥性而造成不完全的拉毛或跑錯(cuò)(短射),而由于組織不良,形成的試樣的機(jī)電性能會(huì)很低。 重新.因此,在薄板成形實(shí)驗(yàn)中,采用EMS制造半固態(tài)漿料。
圖17.成形薄板的厚度
3.3.薄板成形性
圖16示出了在每種條件下制備的最佳薄板樣品的選擇。薄板試樣以?xún)蓚€(gè)沖頭速度(30和300mm/s)和空腔摩擦CONDI-Ti形成。 帶石墨潤(rùn)滑劑和無(wú)石墨潤(rùn)滑劑。板狀樣品表面的黑色部分是石墨潤(rùn)滑劑。圖16(a)示出了在300毫米/秒的沖壓速度下形成的樣品,而沒(méi)有GR。 腔體中的黃鐵礦潤(rùn)滑劑(MF=0.9)。由于半固態(tài)漿料由于其粘度而表現(xiàn)出嚴(yán)重的粘性,如果漿料在沒(méi)有潤(rùn)滑的情況下被壓縮,沖頭可能會(huì)卡在套筒內(nèi)。 T。因此,在這個(gè)實(shí)驗(yàn)中,少量的石墨潤(rùn)滑不能?chē)娫谀L?。在此條件下形成的樣本有短射在CAV的結(jié)束,雙方我 TY。如圖所示的仿真結(jié)果如圖5所示的壓力(B),這短短的鏡頭可以歸因于減少的壓力在型腔最后的?流量入口。圖16(b)和 (C)顯示薄板樣品形成空腔內(nèi)的石墨潤(rùn)滑劑(MF = 0.4)在300和30毫米/秒沖速度,分別地。薄板試樣以300毫米的沖壓速度形成。 用石墨潤(rùn)滑劑?填充型腔完全沒(méi)有任何短鏡頭。雖然只有兩個(gè)?OWS連接在腔體的一端,所有?一直在?OWS在實(shí)際實(shí)驗(yàn)中形成 彪,和過(guò)?流入口被打破,掉了下來(lái),因?yàn)閺臉颖颈焕鰪椛淞?。?0毫米/秒的沖壓速度下形成一個(gè)短鏡頭。 腔和六個(gè)過(guò)度射束導(dǎo)致短射(圖16(c))。如圖4中模擬溫度的模擬結(jié)果所示,這是材料溫度下降到以下的點(diǎn) 585°C。因?yàn)闆_壓速度比SIM計(jì)算條件小10倍,所以溫度甚至更遠(yuǎn),這可能導(dǎo)致不完全成形。
圖18.固體陽(yáng)離子行為的模擬結(jié)果
圖17示出了所形成的薄板樣品的厚度。A組(A1、A2和A3)和B(B1、B2、B3)分別指示樣品的中心和側(cè)位置。A1和B1(靠近門(mén))均大于A3和B3(近在?ow),B組較A組,這可能是由于年齡上?陽(yáng)離子固化收縮。圖18顯示了s的仿真結(jié)果。 Lling后的OLidi陽(yáng)離子行為。與半固態(tài)漿料的相似,在越低處形成的等高線(xiàn)狀的固體陽(yáng)離子模式形成于門(mén)上。因?yàn)槁毼籅1 與A1進(jìn)行固化?陽(yáng)離子慢相比,腔中的其他位置,他們可以預(yù)期的要厚。相比之下,B3和A3固體比其他位置更快,這意味著它們應(yīng)該比其他位置更薄。用石墨潤(rùn)滑劑制作的薄板的厚度 沖頭速度為300 mm/s時(shí),最接近模具型腔的厚度,是成形最精確的產(chǎn)品。用半固態(tài)漿料進(jìn)行薄板成形的結(jié)果表明, 最佳工藝條件為:沖孔速度300 mm/s,腔內(nèi)石墨潤(rùn)滑劑。
圖19.用不同的沖頭速度(VP)和空腔的摩擦狀態(tài)制造的薄板試樣的微觀(guān)結(jié)構(gòu):(a)30mm/s,無(wú)潤(rùn)滑劑;(b)300mm/s,石墨潤(rùn)滑劑;和(c)30m m / s, 石墨潤(rùn)滑劑
3.4.薄板顯微組織
圖19(a)示出了以300mm/s的沖壓速度和在空腔中沒(méi)有石墨潤(rùn)滑劑形成的樣品的微觀(guān)結(jié)構(gòu)(條件1)。微觀(guān)結(jié)構(gòu)表明固相和Li 液相被嚴(yán)重隔離的位置F和E的位置在F(近門(mén)),有幾個(gè)粗樹(shù)枝從聚結(jié);在位置E(離門(mén)),很少有固體顆粒的PAR S.當(dāng)存在高摩擦?xí)r,固體顆粒的流動(dòng)是不透明的。因此,固相的一小部分移動(dòng)到腔中,液相具有更好的流動(dòng)性,填充了腔。 也就是說(shuō),半固態(tài)材料與模具型腔之間的高度摩擦導(dǎo)致了固液相高度的偏析。
圖19(b)和(c)示出分別在300和30毫米/秒(條件1和2)的沖壓速度下形成的樣品,在空腔中使用石墨潤(rùn)滑劑。打孔速度為300 mm/s比30 mm/s的沖孔速度更有利于固相的均勻分布,晶粒尺寸更均勻,密度更大。在30 mm/s時(shí),固體顆粒之間的間隙很大,因?yàn)镾O的數(shù)量很少。 直徑超過(guò)100米的蓋子顆粒。在E位孔隙率很高。圖20顯示了在p點(diǎn)形成的樣品中固體顆粒的體積結(jié)構(gòu)、等效直徑和圓度。 用石墨潤(rùn)滑劑的沖床速度為300毫米/秒和30毫米/秒。在300 mm/s條件下形成的樣品,F(xiàn)位置的等效直徑、圓度和體積分?jǐn)?shù)分別為65m,1.25, 和45.5%。在E位置,分別為62μm、1.27和43.5%。對(duì)于以30mm/s形成的樣品,固體顆粒的當(dāng)量直徑、圓度和體積分?jǐn)?shù) ES在位置72μM,1.45和36%,分別。在位置E,他們70μm,1.4,和35%,分別地。在E位,固相略小,球狀,但VO。 結(jié)果表明,在300 mm/s和30 mm/s下形成的薄板樣品的顯微組織均為Ner,且與顯微組織相比具有更多的球狀特征。 f半固態(tài)漿料與EMS.
當(dāng)半固態(tài)漿料壓縮了一拳,粗顆粒的聚結(jié)斷,單顆粒固體顆粒的變形。這些顆粒和液相?填充模具 腔.對(duì)固體顆粒發(fā)生塑性變形,通過(guò)強(qiáng)制對(duì)流在?填充。形成一個(gè)小而球狀的晶粒結(jié)構(gòu)。固相的運(yùn)動(dòng)速度和運(yùn)動(dòng)距離 較小和更球狀的晶粒增加。
3.5.薄板力學(xué)性能
圖21顯示了在三種條件下形成的樣品的拉伸強(qiáng)度、伸長(zhǎng)率和硬度。樣品在條件2下形成的試樣,其拉伸強(qiáng)度和伸長(zhǎng)率分別為216 MPa和10%,F(xiàn)位為209 MPa,E位為8.5%MPa。該試樣具有維氏硬度值。 F和E陣地分別為72 HV和69 HV。在3條件下形成的試樣在po時(shí)的抗拉強(qiáng)度、伸長(zhǎng)率和維氏硬度分別為160 MPa、4.5%和69.5 HV。 位置F和148MPa,分別為2.5%和68HVE.與條件2下相比,F(xiàn)位置下的這些值分別低56 MPa、5.5%和2.5 HV,而在E位置的值則低61 MPa、6%和1 HV。在條件1下形成的樣品 (不含石墨潤(rùn)滑的型腔)在F、126 MPa和2%℃下拉伸強(qiáng)度和伸長(zhǎng)率分別很低,分別為132 MPa和2%MPa,而E位的拉伸強(qiáng)度和伸長(zhǎng)率較低。 條件2。然而,由于用作液相的大共晶相,維氏硬度在條件3下比條件2高得多。固體P的維氏硬度 Hase約56 HV,液相Hase約98 HV。
在2條件下形成的樣品的拉伸強(qiáng)度和伸長(zhǎng)率在300毫米/秒高于3條件下形成的樣品在30毫米/秒。 ID顆粒稍小,分布更密集。特別是,1和3的條件下試樣的伸長(zhǎng)率明顯?明顯低于樣本條件下 2.這表明顯微組織中固體顆粒的減少降低了伸長(zhǎng)率。在條件3下,雖然顯微組織中的固體顆粒大多為球狀,但仍有一個(gè) 直徑超過(guò)100米的大量固體顆粒。這表明,1.2 mm厚的薄鋼板內(nèi)的固體顆粒數(shù)量遠(yuǎn)小于條件2下的固粒數(shù)。為 在條件1下的微觀(guān)結(jié)構(gòu),固體顆粒很少分布,并在一個(gè)地方集中作為枝晶結(jié)構(gòu)。關(guān)于DIF力學(xué)性質(zhì)的差異 在這三種條件下,與E相比,F(xiàn)位置(靠近柵極)的性能略有改善,但兩種位置的微觀(guān)結(jié)構(gòu)相似。
基于成形性、力學(xué)性能和微觀(guān)結(jié)構(gòu)的分析,對(duì)薄板在不同沖壓速度和無(wú)潤(rùn)滑條件下形成的,2(含石墨的潤(rùn)滑 最合適的方法是采用富饒和300 mm/s的打孔速度。
圖20.用石墨潤(rùn)滑劑在300和30mm/s沖壓速度下形成的樣品中的固體顆粒的體積分?jǐn)?shù)、當(dāng)量直徑和圓度
圖21.制備樣品的力學(xué)性能
4.結(jié)論
通過(guò)模擬試驗(yàn),設(shè)計(jì)了1.2 mm厚薄板的間接流變模.。形成薄板在兩種摩擦條件下的空腔和兩沖孔速度。分析了這些參數(shù)對(duì)成形性和力學(xué)性能的影響。分析和實(shí)驗(yàn)結(jié)果 關(guān)于以下內(nèi)容:
(1)扇形柵極允許半固態(tài)漿料均勻均勻地覆蓋整個(gè)薄腔.
(2)利用位于空腔兩側(cè)的超臨界OWS,可以控制腔側(cè)的低速率增加。
(3)在腔的端部處的過(guò)流的放置允許在腔內(nèi)均勻的溫度和壓力(大于大氣壓)分布。
(4)用電磁攪拌法可以得到固體分?jǐn)?shù)為40%的半固態(tài)漿料,其固體顆粒為Ne和球形固體顆粒。無(wú)EMS的半固態(tài)有花環(huán)顆粒和粗球狀的a-Al部分。 叔叔。半固態(tài)漿料的等效直徑約為75 m,圓度為1.5。半固態(tài)漿體的固體部分分別110μm和2.3。
(5)腔的表面狀態(tài)在固體和液相之間經(jīng)歷了更大的分離,并增加了摩擦。當(dāng)腔的摩擦較高時(shí),固體顆粒將其擴(kuò)散至MO V_e進(jìn)入腔內(nèi),使液相具有較好的非均勻性進(jìn)入腔內(nèi)。
(6)較高的沖孔速度壓縮半固態(tài)漿料產(chǎn)生更好的成形性的薄板和微結(jié)構(gòu)的密集和均勻分布的固體顆粒。
(7)與EMS半固態(tài)漿料相比,成形薄板的顯微組織更呈球狀。固體顆粒受迫變形的塑性變形 過(guò)濾過(guò)程中的矢量。然后形成小球狀顆粒結(jié)構(gòu)。移動(dòng)速度和對(duì)于較小和較小的球狀晶粒,固相的距離增大。
(8)當(dāng)半固態(tài)漿料是一個(gè)石墨潤(rùn)滑劑300毫米/秒沖速度形成,薄板無(wú)塞格雷-固相或其他缺陷得到和液體之間的反應(yīng) 抗拉強(qiáng)度為216 MPa,伸長(zhǎng)率為10%。
致謝
這項(xiàng)研究工作是由國(guó)家研究基金會(huì)(NRF)支持韓國(guó)批準(zhǔn)由韓國(guó)政府資助(編號(hào)2013r1a1a2062759)。知識(shí)經(jīng)濟(jì)部(20104010100540號(hào)),這項(xiàng)研究 是由韓國(guó)研究基金資助(KrF)批準(zhǔn)由韓國(guó)政府資助(MEST)(批準(zhǔn)號(hào):2012-0001204)。
參考文獻(xiàn)
(1)Atkinson, H.V., 2005. Prog. Mater. Sci. 50, 341–412.
(2)Bae, J.W., Kim, T.W., Kang, C.G., 2007. J. Mater. Process. Technol. 191, 165–169. Chen, C.P., Tsao, C.-Y.A., 1997. Acta Mater. 45, 1955–1968.
(3)Fan, Z., Fang, X., Ji, S., 2005. Mater. Sci. Eng., A 412, 298–306.
(4)Flemings, M.C., Riek, R.G., Young, K.P., 1976. Mater. Sci. Eng. 25, 103–117. Ghomashchi, M.R., Vikhrov, A., 2000. J. Mater. Process. Technol. 101, 1–9. Ji, S., Fan, Z., Bevis, M.J., 2001. Mater. Sci. Eng., A 299, 210–217.
(5)Joly, P.A., Mehrabian, R., 1976. J. Mater. Sci. 11, 1393–1418.
(6)Kang, C.G., Bae, J.W., Kim, B.M., 2007. J. Mater. Process. Technol. 187–188, 344–348. Kang, C.G., Choi, J.S., Kim, K.H., 1999. J. Mater. Process. Technol. 88, 159–168.
(7)Kapranos, P., Ward, P.J., Atkinson, H.V., Kirkwood, D.H., 2000. Mater. Des. 21, 387–394.
(8)Kim, N.S., Kang, C.G., 2000. J. Mater. Process. Technol. 103, 237–246.
(9)Niu, X.P., Hu, B.H., Pinwill, I., Li, H., 2000. J. Mater. Process. Technol. 105, 119–127. (10)Pinsky, D.A., Charreyronv, P.O., Flemings, M.C., 1984. Metall. Mater. Trans., B 15B,
173–181.
(11)Seo, P.K., Youn, S.W., Kang, C.G., 2002. J. Mater. Process. Technol. 130–131, 551–557. Seo, P.K., Kim, D.U., Kang, C.G., 2007. J. Mater. Sci. Eng., A 445–446, 20–30.
(12)Yue, T.M., Chadwick, G.A., 1996. J. Mater. Process Technol. 58, 302–307.
第25頁(yè) 共20頁(yè)
收藏