【溫馨提示】====【1】設計包含CAD圖紙 和 DOC文檔,均可以在線預覽,所見即所得,,dwg后綴的文件為CAD圖,超高清,可編輯,無任何水印,,充值下載得到【資源目錄】里展示的所有文件======【2】若題目上備注三維,則表示文件里包含三維源文件,由于三維組成零件數(shù)量較多,為保證預覽的簡潔性,店家將三維文件夾進行了打包。三維預覽圖,均為店主電腦打開軟件進行截圖的,保證能夠打開,下載后解壓即可。======【3】特價促銷,,拼團購買,,均有不同程度的打折優(yōu)惠,,詳情可咨詢QQ:1304139763 或者 414951605======【4】 題目最后的備注【YC系列】為店主整理分類的代號,與課題內容無關,請忽視
畢業(yè)設計開題報告
學院2014屆
題 目: 數(shù)控汽車后視鏡鏡片磨邊機
課 題 類 型: 專用機床設計與開發(fā)
課 題 來 源:
學 生 姓 名:
學 號:
專 業(yè): 機械工程及自動化
班 級:
指 導 老 師:
2013年10月15日
一、本課題研究的主要內容、目的和意義
1. 本課題研究的主要內容:
本課題主要研究汽車后視鏡數(shù)控磨邊機的設計,具體包括以下幾個面:
(1) 簡述汽車后視鏡的行業(yè)發(fā)展現(xiàn)狀及其加工過程中的磨邊工序現(xiàn)狀,綜述設計汽車后視鏡數(shù)控磨邊機的目的、意義和必要性;
(2) 主要設計研究汽車后視鏡數(shù)控磨邊機的數(shù)控工作臺、后視鏡自動夾緊機構、自動上下料機械手、機床床身、冷卻裝置及刀具、 數(shù)控系統(tǒng)、夾緊機構及自動上下料機械手的PLC自動控制;
(注:本人負責夾緊機構及自動上下料機械手的機械部分研究設計)
2.本課題研究的目的和意義:
(1)通過對汽車后視鏡數(shù)控磨邊機的設計使我們得到對所學相關課程的綜合訓練;
(2)傳統(tǒng)的玻璃手工上料,效率的低下,而且由于毛胚玻璃上有刺很容易刺傷工人需要一種自動的高精度自動傳輸系統(tǒng)。傳統(tǒng)的配料以人為主體,而人的操作總是有失誤的,并不如機器可靠。本設計,玻璃磨邊機自動上料系統(tǒng)效率高,反應快,確保玻璃磨邊機高質量進行工作。
(3)本設計的主要任務是把玻璃切割機生產(chǎn)的毛胚玻璃通過自動送料系統(tǒng)送到磨邊機上,然后在磨邊機上進行磨邊,深加工玻璃。
傳統(tǒng)夾緊機構對加工時的干涉太大,對生產(chǎn)量影響較大,設計一款新的夾緊機構,使得加工時間縮短,加工精度得到保證,生產(chǎn)量得到提高。
二、本課題的國內外研究動態(tài)
目前國內外還沒有全自動數(shù)控汽車后視鏡玻璃磨邊機的出現(xiàn),因此本次設計對汽車后視鏡的加工具有重大意義。
(1)氣動送料機
是一種用于冷擠壓套圈類零件的送料機器,是沖床進行技術改造的理想附機。如日本的RF20SD—0R11 。但是該結構復雜,裝配、制造、維修困難,價格昂貴,又不適合于我國送料要求。
因此利用小型機械手進行上下料工作,足以達到要求,且成本相對減少,
機械手的運動程序如下:
上料:吸附—提升—前進至中心—放松—返回
下料:前進至中心—下降—吸附—提升—返回
(2)夾緊機構
常見機床的夾緊機構是利用卡盤或虎鉗夾緊,但本次課題是用于夾緊汽車后視鏡的玻璃,強度較低,硬度也很低,因此要求夾具的設計要求較高。
三、本課題的工作程序
(1)了解夾緊機構的工作原理和機械手上下料的工作原理,并根據(jù)實際需要確定總體方案。
(2)畫出夾緊機構和機械手的草圖,根據(jù)草圖選擇實際需要的各部件。
(3)通過網(wǎng)絡,圖書館等方式查找相關技術參數(shù)和各部件使用條件。
(4)通過計算和查找手冊等確定尺寸大小,并繪制(4張A0圖紙,或與之相等圖量的其他型號圖紙)關鍵零件的圖紙:夾緊機構的總裝配圖一張(A0),機械手機械部分的總裝配圖一張(A0),主要零件的零件圖16張(A3)
(5)根據(jù)整個設計的過程,書寫說明書(2萬字以上,原創(chuàng)的,重合度不能超過20%)。
夾緊機構的初步方案圖:(里面的字從上往下依次是:軸承,可轉動,軸承,氣缸)氣缸下邊是硬鏈接在工作臺上的。
寧XX大學
畢業(yè)設計(論文)
數(shù)控汽車后視鏡鏡片磨邊機設計
所在學院
專 業(yè)
班 級
姓 名
學 號
指導老師
年 月 日
摘 要
機械手是在在機械化、自動化生產(chǎn)過程中發(fā)展的一種新型裝置,使用的一種具有抓取和移動工件功能的自動化裝置。機械手能代替人類、重復枯燥完成危險工作,提高勞動生產(chǎn)力,減輕人勞動強度。該裝置涵蓋了位置控制技術可編程控制技術、檢測技術等。本課題擬開發(fā)的物料氣壓機械手可在空間抓放物體,動作靈活多樣,根據(jù)工件的變化及運動流程的要求隨時更改相關參數(shù),可代替人工在高溫危險區(qū)進行作業(yè),。
關鍵詞:機械手, 氣壓機械手,抓取,提升
51
Abstract
The manipulator is a new device developed in the mechanization, automation of production process, a grasping and moving the workpiece function of automation device use. The manipulator can repeat boring to do dangerous work instead of humans,, improve labor productivity, reduce labor intensity. The device covers the position control technology of programmable control technology, detection technology. The material of hydraulic manipulator this subject to the grasping be up in space objects, flexible, any changes to the relevant parameters according to the change and the movement flow requirements, but instead of manual operation in high risk areas,.
Key Words: manipulator, hydraulic manipulator, crawl, enhance
目 錄
摘 要 II
Abstract III
目 錄 IV
第1章 緒論 1
1.1課題背景及目的 1
1.2 本課題的國內外研究現(xiàn)狀 2
1.3 本課題研究的目的和意義 2
1.4 氣壓機械手概念 2
1.5 國內氣壓機械手的研究 3
第2章 氣壓機械手設計要求與方案 5
2.1 氣壓機械手設計要求 5
2.2 基本設計思路 5
2.2.1 系統(tǒng)分析 5
2.2.2 總體設計框圖 5
2.2.3 氣壓機械手的基本參數(shù) 6
2.3 氣壓機械手結構設計 7
2.4 機械手材料的選擇 7
2.5機械臂的運動方式 7
2.6 氣壓機械手驅動方式的選擇 8
2.7 動作要求分析 8
2.8 氣壓機械手結構及驅動系統(tǒng)選型 9
第3章 機械手機械部分的設計計算 10
3.1吸盤設計要求及選型 10
3.2升降方向設計計算 11
3.2.1 初步確系統(tǒng)壓力 11
3.2.2 升降氣缸計算 11
3.2.3 活塞桿的計算校核 13
3.2.4 氣缸工作行程的確定 15
3.2.5 活塞的設計 15
3.2.6 導向套的設計與計算 15
3.2.7 端蓋和缸底的計算校核 16
3.2.7 缸體長度的確定 17
3.2.8 緩沖裝置的設計 17
3.2.9 氣缸的選型 17
3.3 水平方向設計計算 19
3.3.1 水平方向計算 19
3.3.2 氣缸的選型 20
3.4機身結構的設計校核 21
3.5螺柱的設計與校核 21
3.6氣機械手的定位及平穩(wěn)性確定 23
3.6.1常用的定位方式 23
3.6.2影響平穩(wěn)性和定位精度的因素 23
3.6.3氣機械手運動的緩沖裝置 24
3.7 元件選取及工作原理 25
3.7.1 氣源裝置 25
3.7.2 執(zhí)行元件 26
3.7.3 控制元件 27
3.7.4 輔助元件 28
3.7.5 真空發(fā)生器 29
3.8 回路的工作原理 29
第4章 氣驅動系統(tǒng)設計 33
4.1腕部擺動氣回路 33
4.2小臂伸縮缸氣回路 34
4.3總體系統(tǒng)圖 35
第5章 夾緊機構的設計 37
5.1 總體方案設計 37
5.2 伸縮氣缸設計 37
5.2.1 初步確系統(tǒng)壓力 37
5.2.2 升降氣缸計算 38
5.2.3 活塞桿的計算校核 40
5.3 定向鍵設計 43
5.4 確定底座結構和總體結構 44
5.5 緊固件設計與校核 45
總結 48
參考文獻 49
致 謝 50
第1章 緒論
1.1課題背景及目的
由于現(xiàn)代科學技術的發(fā)展,在工業(yè)生產(chǎn)和日常生活中,氣壓機械手技術得到了廣泛的應用。智能型氣壓機械手的研究是近年來科學家同意致力的方向。式氣壓機械手的人體模型,它可以模擬各種人類行為和人類的外部特征。未來的氣壓機械手的管家將不是夢想。
根據(jù)不同的氣壓機械手的結構,氣壓機械手可以分為各種各樣的。輪式移動機械手,履帶式氣壓機械手,機械手,行走氣壓機械手等。值得一提的是,行走氣壓機械手,他是近年來類機的一個重要研究成果。移動它最喜歡的動物甚至人類交談。這是一個非常復雜的自動化程度很高的運動。與傳統(tǒng)的輪式和履帶式氣壓機械手相比,對環(huán)境的適應性。在工作空間很小,在崎嶇的道路上,樓梯等。不久的將來,這項技術將被廣泛使用。
在研究中,氣壓機械的生產(chǎn),對氣壓機械手設計的計算機模擬中的應用是一個非常重要的過程。包括零件建模,裝配氣壓機械手的仿真,與運動仿真。通過仿真,設計師可以觀察各機構的運動非常直觀,知道沒有干擾;可以了解各部件的受力,不同的模擬數(shù)據(jù)。該方法大大降低了開發(fā)時間和成本。
在學校的畢業(yè)設計是機械設計制造及其自動化專業(yè)學習的最后一個環(huán)節(jié),學習在大學四年的繼續(xù)深化和檢驗,具有實踐性和綜合性,是不是一個單一的其他替代方案,通過畢業(yè)設計可以提高綜合能力的培養(yǎng),是要去上班,提高實際工作能力起著非常重要的作用。為了實現(xiàn)以下目標:
(1)的基本理論,基本知識和基本技能的綜合運用,提高分析和解決實際問題的能力。
(2)接受全面的培訓工程師必須,提高實際工作能力。為調查研究,文獻和數(shù)據(jù)收集和分析能力;設計和開發(fā)測試計劃能力;設計,計算和繪圖能力的提高;總結和撰寫論文的能力。
(3)的綜合素質和實踐能力的測試。
1.2 本課題的國內外研究現(xiàn)狀
目前國內外還沒有全自動數(shù)控汽車后視鏡玻璃磨邊機的出現(xiàn),因此本次設計對汽車后視鏡的加工具有重大意義。
(1)氣動送料機
是一種用于冷擠壓套圈類零件的送料機器,是沖床進行技術改造的理想附機。如日本的RF20SD—0R11 。但是該結構復雜,裝配、制造、維修困難,價格昂貴,又不適合于我國送料要求。
因此利用小型機械手進行上下料工作,足以達到要求,且成本相對減少,
機械手的運動程序如下:
上料:吸附—提升—前進至中心—放松—返回
下料:前進至中心—下降—吸附—提升—返回
(2)夾緊機構
常見機床的夾緊機構是利用卡盤或虎鉗夾緊,但本次課題是用于夾緊汽車后視鏡的玻璃,強度較低,硬度也很低,因此要求底座的設計要求較高。
1.3 本課題研究的目的和意義
(1)通過對汽車后視鏡數(shù)控磨邊機的設計使我們得到對所學相關課程的綜合訓練;
(2)傳統(tǒng)的玻璃手工上料,效率的低下,而且由于毛胚玻璃上有刺很容易刺傷工人需要一種自動的高精度自動傳輸系統(tǒng)。傳統(tǒng)的配料以人為主體,而人的操作總是有失誤的,并不如機器可靠。本設計,玻璃磨邊機自動上料系統(tǒng)效率高,反應快,確保玻璃磨邊機高質量進行工作。
(3)本設計的主要任務是把玻璃切割機生產(chǎn)的毛胚玻璃通過自動送料系統(tǒng)送到磨邊機上,然后在磨邊機上進行磨邊,深加工玻璃。
傳統(tǒng)夾緊機構對加工時的干涉太大,對生產(chǎn)量影響較大,設計一款新的夾緊機構,使得加工時間縮短,加工精度得到保證,生產(chǎn)量得到提高。
1.4 氣壓機械手概念
目前,工業(yè)機械手的概念,世界是不統(tǒng)一,分類是不一樣的。國際標準化聯(lián)合國最近采用了美國機械手協(xié)會定義了工業(yè)機械手的組織:工業(yè)機械手是一種可編程的多功能操作裝置,可以改變行動計劃,完成各種工作,主要用于材料處理,工件傳送。
氣壓機械手(機械手)是一臺自動執(zhí)行工作。它是一個產(chǎn)品的控制理論,先進的集成機械電子,計算機,材料和仿生。在工業(yè),醫(yī)學,農業(yè),建筑業(yè)甚至軍事等領域中均有重要的應用。
氣壓機械手是一種有代表性的,機械的和電子控制系統(tǒng),自動化程度高的生產(chǎn)工具,在近50年的發(fā)展。在制造業(yè)中,氣壓工業(yè)機械手技術已經(jīng)得到了廣泛的應用。這是一個高的自動化程度,改善勞動條件,保證產(chǎn)品質量和提高工作效率,發(fā)揮了非常重要的作用??梢哉f,他是現(xiàn)代工業(yè)的技術革命。
執(zhí)行系統(tǒng)一般包括手,腕,臂,底座,一個主要的運動系統(tǒng)。
主要由氣壓機械手執(zhí)行系統(tǒng),驅動系統(tǒng)和控制系統(tǒng)三部分。
手抓(或吸附,控股)和松開工件或工具的部分,由手指(或吸收),驅動元件和驅動元件。
1.5 國內氣壓機械手的研究
工業(yè)氣壓機械手的應用在日本有著悠久的歷史。在七十年代當工業(yè)氣壓操縱器,然后經(jīng)過十年的發(fā)展,已在工業(yè)氣壓機械手八十年代流行。他們的年工業(yè)產(chǎn)值迅速增加。1980達到一千億日元,1990至六千億日元。在2004達到了一兆和八千五百億日元。這表明工業(yè)氣壓機械手在提高生產(chǎn)效率的重要性。
在國際上,各個國家都實現(xiàn)了工業(yè)氣壓機械手的重要性。因此,工業(yè)氣壓機械手訂單銳減。相比于2003 2002百分之十的增長的訂單。然后工業(yè)氣壓機械手的需求量仍在上升。從2001到2006,超過90000的全球經(jīng)濟增長中的訂單。7%的平均年增長率。
國際工業(yè)氣壓機械手的發(fā)展方向:
氣壓機械手涉及多學科、多領域的知識。包括:計算機,電子,控制,人工智能,傳感器,通信和網(wǎng)絡,控制,機械等。氣壓機械手的發(fā)展離不開主題。正是由于各學科整合的相互作用,創(chuàng)建一個自動化程度高,其。隨著科學技術的進步,在氣壓機械手的應用范圍越來越廣泛;技術越來越高,功能更強大。它是氣壓機械手的研究向小型化發(fā)展。氣壓機械手將更多地進入人們的日常生活??偟陌l(fā)展趨勢是模塊化,標準化,智能化。
廣泛應用于工業(yè)氣壓機械手,以提高質量和生產(chǎn)力,產(chǎn)品安全人員安全,改善勞動環(huán)境,減輕勞動強度,提高生產(chǎn)效率,節(jié)約原材料的消耗,降低了生產(chǎn)成本,具有非常重要的作用。廣泛應用于工業(yè)氣壓機械手的以人為本的原則,它的出現(xiàn)使人們的生活更方便、美好。氣壓機械手工業(yè)是一個大型高新技術工業(yè)計算機,后車?,F(xiàn)代軍事工業(yè),氣壓機械發(fā)展的市場前景是非常好的。從第二十世紀起,氣壓機械行業(yè)的穩(wěn)步增長。在第二十世紀九十年代,氣壓機械產(chǎn)品的開發(fā)和快速增長,年均增長率超過百分之十。在2004到百分之二十的記錄。亞洲氣壓機械手的更多需求,年增長率高達百分之四十三。經(jīng)過40年的發(fā)展,應用工業(yè)氣壓機械手的許多領域。生產(chǎn)中使用最廣泛的氣壓機械手。如制造焊接,熱處理,表面涂層,加工,裝配,測試和倉庫,毛(沖壓,壓鑄,鍛坯等)等操作,代替人工操作的氣壓機械手,極大地提高了生產(chǎn)效率。
第2章 氣壓機械手設計要求與方案
2.1 氣壓機械手設計要求
本課題主要研究汽車后視鏡數(shù)控磨邊機的設計,具體包括以下幾個面:
(1) 簡述汽車后視鏡的行業(yè)發(fā)展現(xiàn)狀及其加工過程中的磨邊工序現(xiàn)狀,綜述設計汽車后視鏡數(shù)控磨邊機的目的、意義和必要性;
(2) 主要設計研究汽車后視鏡數(shù)控磨邊機的數(shù)控工作臺、后視鏡自動夾緊機構、自動上下料機械手、機床床身、冷卻裝置及刀具、 數(shù)控系統(tǒng)、夾緊機構及自動上下料機械手的PLC自動控制;
(注:本人主要設計夾緊機構及自動上下料機械手的機械部分研究設計)
2.2 基本設計思路
2.2.1 系統(tǒng)分析
該機械手是實現(xiàn)生產(chǎn)過程自動化,提高勞動生產(chǎn)率的有力工具。為了在生產(chǎn)過程實現(xiàn)自動化,機械化,自動化的綜合技術經(jīng)濟分析的需要,從而判斷是否適當?shù)臋C械手。以完成機械手的設計,一般都要先做以下工作:
(1)根據(jù)使用場合的機械手機械手的,明確的目標和任務。
(2)機械手的工作環(huán)境分析。
(3)對系統(tǒng)要求的分析,確定了機械手和方案的基本功能,如自由度的數(shù)目,機械手的運動速度,定位準確,抓住重。此外,根據(jù)抓斗氣壓質量,形狀,尺寸和批量生產(chǎn),以確定的形式和機械手的位置和握力的大小。
在這方面,我分析如下:
(1)為手材料氣壓機械設計問題,機械手是物料輸送機械手。雖然機械手的使用場合,也非常廣泛,涉及到材料的狀態(tài),環(huán)境因素的作業(yè)線,比我的知識和能力,我選擇了材料氣壓機械手的小對象處理非生產(chǎn)線。
(2)由于機械手我選擇的是材料的氣壓機械手,小對象處理非生產(chǎn)線。因此,系統(tǒng)的工作環(huán)境下,機械廠,準確度高,故障率低,速度。
2.2.2 總體設計框圖
圖2 總體設計框圖
如圖2為總設計框圖,說明如下:
(1) 控制系統(tǒng):任務是根據(jù)機械手的作業(yè)指令程序和傳感器反饋回來的信號,控制機械手的執(zhí)行機構,使其完成規(guī)定的運動和功能。主要設計目標為CPU的選擇,CPU程序的編寫調試等。
(2) 驅動系統(tǒng):驅動系統(tǒng)工作的驅動裝置。
(3) 機械系統(tǒng):包括機身、機械臂、手腕、手爪。需要確定其自由度、坐標形式,并計算得出具體結構。
(4) 感知系統(tǒng):即傳感器的選擇及具體作用。
2.2.3 氣壓機械手的基本參數(shù)
1. 機械手的最大氣壓物料的重量是它的主參數(shù)。本論文物料氣壓機械手所氣壓的物料質量可設定為汽車后視鏡,重量1公斤之內的汽車后視鏡。
2. 運動速度直接影響機械手的動作快慢和機械手動作的穩(wěn)定性,所以運動速度也是是物料物料氣壓機械手的一個主要的基本參數(shù)。設計速度過低的話,會無法滿足機械手的動作功能,限制機械手的使用范圍。設計的速度過高又會加重機械手的負載并影響機械手動作的平穩(wěn)性。
3. 伸縮行程和工作半徑是決定機械手工作范圍及整機尺寸的關鍵,也是機械手設計的基本參數(shù)。
3.定位精度也是機械手的主要基本參數(shù)之一。機械手精度太低,就完成不了功能,精度太高又意味著成本的增加。綜合考慮,該物料氣壓機械手的定位精度設定定位精度±0.3mm。物料氣壓機械手的各個部分的基本參數(shù)可以由上面已經(jīng)知道的物料氣壓機械手各關節(jié)的行程和時間分配來決定。
機械手的設計參數(shù)如下所示:
2 機械手(重復)定位精度:±0.5mm;
2 機械手最大抓重:1kg;
2 工件尺寸:許用后視鏡厚度:δ=3 – 20mm
可磨后視鏡之尺寸范圍:150×150 – 2000x2000mm ,
玻璃的曲度半徑范 250--1000. 投影到X,Y面上的尺寸:以內的任何形狀
2 支座旋轉角度為:90度(最大速度:90度每秒);
2 物料盤(采用步進電機控制)每工步旋轉角度:30度(最大轉度:30度每秒);
2 Y軸大臂上下移動距離為:10cm(最大速度10cm/s);
2 Y軸小臂上下移動距離為:5cm(最大速度10cm/s);
2 X軸小臂伸縮距離:5cm (最大速度10cm/s);
2 料槽小臂(推動工件的推桿)伸縮距離為:7.5cm(最大速度10cm/s)。
2.3 氣壓機械手結構設計
根據(jù)所設計的機械手的運動方式:機械臂的轉動,機械臂的升降。根據(jù)上文所說的,機械手按照坐標的分類情況,選擇圓柱坐標式機械手更為妥當。
2.4 機械手材料的選擇
機械手的材料應根據(jù)手臂的工作條件,滿足機械手的設計和制造要求。從設計思想,機械臂完成各種運動。因此,對材料的要求是為移動部件,它應該是輕質材料。另一方面,手臂振動經(jīng)常的運動過程中,這將大大減少它的運動精度。所以在材料的選擇上,綜合考慮的質量,剛度,阻尼的需要,從而有效地提高了機械臂的動力學性能。此外,機械手選材料和不同材料的一般結構。機械手是一種伺服機構,受控制,必須考慮其可控性。在臂的材料選擇,可控性和可加工性的材料,結構,質量性能的考慮。
總之,選擇一個機械臂的材料,應考慮強度,剛度,重量輕,彈性,耐沖擊,外觀和價格等因素。這里有幾個機械手使用的材料:
(L)的高強度鋼,碳素結構鋼和合金結構鋼:這類材料的強度,特別是合金結構鋼的強度增加了4 ~ 5倍,彈性模量,抗變形能力,是最廣泛使用的材料;
(2)鋁,鋁合金等輕合金材料的共同特點是重量輕,彈性模量E的小,但材料的密度小,與E/P比值還與鋼相比;
(3)陶瓷:陶瓷材料具有良好的質量,但易碎,但處理不好,接頭需要特殊的設計與金屬零件。然而,日本已開發(fā)ARM陶瓷機械手用于高速機械手的樣品;
從機械手設計的角度來看,不需要負載能力在材料的選擇,也不需要高彈性模量和抗變形能力,除了要考慮到材料成本,加工和其他因素。在各種因素的措施,結合鋁合金的初步選擇的工作條件,如機械臂組件。
2.5機械臂的運動方式
機械手的運動形式有五種常見的SCARA型,直角坐標式極坐標型,聯(lián)合型和圓柱坐標。根據(jù)運動形式的選擇主要運動參數(shù)為基礎的結構設計。一種運動形式以滿足不同生產(chǎn)工藝的需要,可以采用不同的結構。選擇表格的具體位置,必須根據(jù)操作要求,工作地點,和氣壓工作中心線方向的變化,比較和選擇。
這種機械手的定位2個肩關節(jié)和肘關節(jié)的1,2或3手腕方向。其中,繞垂直軸肩,另一個肩斜度。肩關節(jié)的兩個正交軸。平行于第二軸肩關節(jié),考慮到機械手的工作特點,這就要求動作靈活,具有較大的工作空間,結構緊湊,占用空間小,關節(jié)式機械手的選擇。如圖所示。這種配置,動作靈活,工作空間大,干涉儀的最小空間機械臂操作,結構緊湊,占地面積小,關節(jié)相對運動部位易密封與防塵。但這種機械手運動學逆解比較復雜,難以確定的端元;態(tài)度不夠直觀,并在控制,計算量比較大。
圖3 常見的運動方式
2.6 氣壓機械手驅動方式的選擇
機械手使用的驅動方式主要有氣壓驅動,氣壓驅動和電機驅動的四種基本形式。
但是,與氣壓傳動相比,低功耗,能源,氣壓傳動結構相對簡單的速度不易控制,精度不高。
油馬達驅動能量是簡單,速度和位置精度高,使用方便,低噪音,高速變化的機制,高效,靈活的控制。
氣壓驅動的特點是功率大,結構簡單,省去了減速裝置,響應速度快,精度高。但需要有氣壓源,但也容易漏氣。
首先,我會選擇驅動電機,但考慮到純機械結構的機械手的運動并不能達到理想的傳播效果。如果你使用氣壓或氣壓傳動機械臂的旋轉,必須與回轉氣壓或旋轉氣壓缸,結構比較復雜,不利于設計。
改進后的方案,將驅動方式分為兩個部分。其機械臂伸縮,升降機械手抓抓,采用氣壓驅動方式。
2.7 動作要求分析
動作一:送 料
動作二:預夾緊
動作三:手臂上升
動作四:手臂旋轉
動作五:小臂伸長
動作六:手腕旋轉
預夾緊
手臂上升
手臂旋轉
手臂伸長
手臂轉回 手腕旋轉
圖2.2 氣壓機械手動作簡易圖
2.8 氣壓機械手結構及驅動系統(tǒng)選型
本課題所設計的氣壓機械手為通用型的氣壓機械手,其中坐標系為圓柱坐標系結構。驅動系統(tǒng)選用油馬達驅動和氣壓驅動,油馬達驅動用于機座的旋轉和手臂的上下移動,氣壓驅動用于手臂的伸縮和氣壓機械手的夾取和翻轉[3]。
第3章 機械手機械部分的設計計算
3.1吸盤設計要求及選型
(1)不論是夾持或是吸附,末端執(zhí)行器需具有滿足作業(yè)要求的足夠的夾持力和所需的夾持位置精度。
(2)應盡可能使末端執(zhí)行器結構簡單,緊湊、重量輕,以減輕手臂的負荷。專用的末端執(zhí)行器機構簡單,工作效率高,而能完成多種作業(yè)的萬能末端執(zhí)行器可能具有結構復雜、費用昂貴的缺點,因此提倡設計可快速更換的系列化、通用化專用末端執(zhí)行器[10]。
由于本課題的研究對象是是汽車后視鏡,其中后視鏡厚度:δ=3 – 20mm,可磨后視鏡之尺寸范圍:150×150 – 2000x2000mm,玻璃的曲度半徑范 250--1000,投影到X,Y面上的尺寸:以內的任何形狀
吸盤是直接吸吊物體的元件,一般用橡膠做成。真空吸盤之所以能吸附在工件上的原因是由于環(huán)境壓力(大氣壓力)大于吸盤與工件之間的壓力。將吸盤與真空發(fā)生裝置連接,吸盤內部空間的空氣被抽去,當吸盤接觸到工件時,大氣和吸盤之間形成了密封,就會吸住物料,吸氣大小與大氣壓和吸盤內部空間的壓力差成正比。
選擇65CW36吸盤。
3.2升降方向設計計算
3.2.1 初步確系統(tǒng)壓力
表3-1 按負載選擇工作壓力[1]
負載/ KN
<5
5~10
10~20
20~30
30~50
>50
工作壓力/MPa
< 0.8~1
1.5~2
2.5~3
3~4
4~5
≥5
表3-2 各種機械常用的系統(tǒng)工作壓力[1]
機械類型
機 床
農業(yè)機械
小型工程機械
建筑機械
氣鑿巖機
氣機
大中型挖掘機
重型機械
起重運輸機械
磨床
組合
機床
龍門
刨床
拉床
工作壓力/MPa
0.8~2
3~5
2~8
8~10
10~18
20~32
由表2-1和表2-2可知,初選氣缸的設計壓力P1=1MPa
3.2.2 升降氣缸計算
為了滿足工作臺快速進退速度相等,并減小氣泵的流量,則氣缸無桿腔與有桿腔的等效面積A1與A2應滿足A1=2A2(即氣缸內徑D和活塞桿直徑d應滿足:d=0.707D。為防止切削后工件突然前沖,氣缸需保持一定的回油背壓,并取氣缸機械效率。則氣缸上的平衡方程
故氣缸無桿腔的有效面積:
氣缸直徑
表1 氣缸內徑系列GB/T2348-1980mm
8
10
12
16
20
25
32
40
50
63
80
100
125
160
200
250
320
400
500
按GB/T2348-1980,取標準值D=63mm;本來可以取50的,考慮不可預測的超載等因素,故在這取的略微大一些。
查《氣傳動與控制手冊》根據(jù)桿徑比d/D,一般的選取原則是:當活塞桿受拉時,一般選取d/D=0.3-0.5,當活塞桿受壓時,一般選取d/D=0.5-0.7。
因A1=2A,故活塞桿直徑d=0.5D=31.5mm 取d=32(標準直徑)
表2 活塞桿直徑系列
4
5
6
8
10
12
14
16
18
20
22
25
28
32
36
40
45
50
56
63
70
80
90
100
110
125
140
160
180
200
220
250
280
320
360
400
(1) 氣缸缸體厚度計算
缸體是氣缸中最重要的零件,當氣缸的工作壓力較高和缸體內經(jīng)較大時,必須進行強度校核。缸體的常用材料為20、25、35、45號鋼的無縫鋼管。在這幾種材料中45號鋼的性能最為優(yōu)良,所以這里選用45號鋼作為缸體的材料。
式中,——實驗壓力,MPa。當氣缸額定壓力Pn5.1 MPa時,Py=1.5Pn,當Pn16MPa時,Py=1.25Pn。
[]——缸筒材料許用應力,N/mm。[]=,為材料的抗拉強度。
注:1.額定壓力Pn
額定壓力又稱公稱壓力即系統(tǒng)壓力,Pn=10MPa
2.最高允許壓力Pmax
Pmax1.5Pn=1.2510=12.5MPa
氣缸缸筒材料采用45鋼,則抗拉強度:σb=600MPa
安全系數(shù)n按《氣傳動與控制手冊》P243表2—10,取n=5。
則許用應力[]==120MPa
=
=5.5mm
,滿足。所以氣缸厚度取10mm。
則氣缸缸體外徑為83mm。
3.缸筒結構設計
缸筒兩端分別與缸蓋和缸底鏈接,構成密封的壓力腔,因而它的結構形式往往和缸蓋及缸底密切相關[6]。因此,在設計缸筒結構時,應根據(jù)實際情況,選用結構便于裝配、拆卸和維修的鏈接形式,缸筒內外徑應根據(jù)標準進行圓整。
3.2.3 活塞桿的計算校核
活塞桿是氣缸傳遞力的主要零件,它主要承受拉力、壓力、彎曲力及振動沖擊等多種作用,必須有足夠的強度和剛度。其材料取Q235鋼。
活塞桿直徑的計算[1]
查《氣傳動與控制手冊》根據(jù)桿徑比d/D,一般的選取原則是:當活塞桿受拉時,一般選取d/D=0.3-0.5,當活塞桿受壓時,一般選取d/D=0.5-0.7。
因A1=2A,故活塞桿直徑d=0.707D=88.375mm按GB/T2348—1993將所計算的d值圓整到標準直徑,以便采用標準的密封裝置。圓整后得:
取d=90(標準直徑)
表2 活塞桿直徑系列
4
5
6
8
10
12
14
16
18
20
22
25
28
32
36
40
45
50
56
63
70
80
90
100
110
125
140
160
180
200
220
250
280
320
360
400
按最低工進速度驗算氣缸尺寸,查產(chǎn)品樣本,調速閥最小穩(wěn)定流量,因工進速度
為最小速度,則由式
(4-3)
本例=122.65625>1.25,滿足最低速度的要求。
2.活塞桿強度計算:
<90mm (4-4)
式中 ————許用應力;(Q235鋼的抗拉強度為375-500MPa,取400MPa,為位安全系數(shù)取5,即活塞桿的強度適中)
3.活塞桿的結構設計
活塞桿的外端頭部與負載的拖動油馬達機構相連接,為了避免活塞桿在工作生產(chǎn)中偏心負載力,適應氣缸的安裝要求,提高其作用效率,應根據(jù)負載的具體情況,選擇適當?shù)幕钊麠U端部結構。
4.活塞桿的密封與防塵
活塞桿的密封形式有Y形密封圈、U形夾織物密封圈、O形密封圈、V形密封圈等[6]。采用薄鋼片組合防塵圈時,防塵圈與活塞桿的配合可按H9/f9選取。薄鋼片厚度為0.5mm。為方便設計和維護,本方案選擇O型密封圈。
3.2.4 氣缸工作行程的確定
氣缸工作行程長度可以根據(jù)執(zhí)行機構實際工作的最大行程確定,并參照表4-4選取標準值。氣缸活塞行程參數(shù)優(yōu)先次序按表4-4中的a、b、c選用。
表4-4(a)氣缸行程系列(GB 2349-80)[6]
25
50
80
100
125
160
200
250
320
400
500
630
800
1000
1250
1600
2000
2500
3200
4000
表4-4(b) 氣缸行程系列(GB 2349-80)[6]
40
63
90
110
140
180
220
280
360
450
550
700
900
1100
1400
1800
2200
2800
3600
表4-4(c) 氣缸形成系列(GB 2349-80)[6]
240
260
300
340
380
420
480
530
600
650
750
850
950
1050
1200
1300
1500
1700
1900
2100
2400
2600
3000
3400
3800
根據(jù)設計要求知快速接近工件,行程根據(jù)任務書要求,根據(jù)表3-8,可選取垂直方向氣缸的工作行程為900mm,可選取水平方向氣缸的工作行程為1000mm。
3.2.5 活塞的設計
由于活塞在氣力的作用下沿缸筒往復滑動,因此,它與缸筒的配合應適當,既不能過緊,也不能間隙過大。配合過緊,不僅使最低啟動壓力增大,降低機械效率,而且容易損壞缸筒和活塞的配合表面;間隙過大,會引起氣缸內部泄露,降低容積效率,使氣缸達不到要求的設計性能??紤]選用O型密封圈。
3.2.6 導向套的設計與計算
1.最小導向長度H的確定
當活塞桿全部伸出時,從活塞支承面中點到到導向套滑動面中點的距離稱為最小導向長度[1]。影響氣缸工作性能和穩(wěn)定性。因此,在設計時必須保證氣缸有一定的最小導向長度。根據(jù)經(jīng)驗,當氣缸最大行程為L,缸筒直徑為D時,最小導向長度為:
(4-5)
一般導向套滑動面的長度A,在缸徑小于80mm時取A=(0.6~1.0)D,當缸徑大于80mm時取A=(0.6~1.0)d.?;钊麑挾菳取B=(0.6~1.0)D。若導向長度H不夠時,可在活塞桿上增加一個導向套K(見圖4-1)來增加H值。隔套K的寬度。
圖4-1 氣缸最小導向長度[1]
因此:最小導向長度,取H=9cm;
導向套滑動面長度A=
活塞寬度B=
2.導向套的結構
導向套有普通導向套、易拆導向套、球面導向套和靜壓導向套等,可按工作情況適當選擇。
3.2.7 端蓋和缸底的計算校核
在單活塞氣缸中,有活塞桿通過的端蓋叫端蓋,無活塞桿通過的缸蓋叫缸頭或缸底。端蓋、缸底與缸筒構成密封的壓力容腔,它不僅要有足夠的強度以承受氣力,而且必須具有一定的連接強度。端蓋上有活塞桿導向孔(或裝導向套的孔)及防塵圈、密封圈槽,還有連接螺釘孔,受力情況比較復雜,設計的不好容易損壞。
1.端蓋的設計計算
端蓋厚h為:
式中 D1——螺釘孔分布直徑,cm;
P——壓力,;
——密封環(huán)形端面平均直徑,cm;
——材料的許用應力,。
2.缸底的設計
缸底分平底缸,橢圓缸底,半球形缸底。
3.2.7 缸體長度的確定
氣缸缸體內部長度應等于活塞的行程與活塞的寬度之和。缸體外形長度還需要考慮到兩端端蓋的厚度[1]。一般氣缸缸體長度不應大于缸體內經(jīng)的20~30倍。取系數(shù)為5,則氣缸缸體長度:L=5*10cm=50cm。
3.2.8 緩沖裝置的設計
氣缸的活塞桿(或柱塞桿)具有一定的質量,在氣力的驅動下運動時具有很大的動量。在它們的行程終端,當桿頭進入氣缸的端蓋和缸底部分時,會引起機械碰撞,產(chǎn)生很大的沖擊和噪聲。采用緩沖裝置,就是為了避免這種機械撞擊,但沖擊壓力仍然存在,大約是額定工作壓力的兩倍,這就必然會嚴重影響氣缸和整個氣系統(tǒng)的強度及正常工作。緩沖裝置可以防止和減少氣缸活塞及活塞桿等運動部件在運動時對缸底或端蓋的沖擊,在它們的行程終端能實現(xiàn)速度的遞減,直至為零。
當氣缸中活塞活塞運動速度在6m/min以下時,一般不設緩沖裝置,而運動速度在12m/min以上時,不需設置緩沖裝置。在該組合機床氣系統(tǒng)中,動力滑臺的最大速度為4m/min,因此沒有必要設計緩沖裝置。
3.2.9 氣缸的選型
經(jīng)過比較,參考市場上的氣缸類型,選擇一種可靠優(yōu)質的氣缸產(chǎn)品的生產(chǎn)商—速易可(上海)有限公司http://www.tonab.net/about_us.asp。
速易可氣動(上海)有限公司成立于2004年,從事于空油壓零組件和設備研 究、生產(chǎn)、銷售的自動化廠商,產(chǎn)品以『TONAB』品牌營銷國內外市場,產(chǎn)品主要有空氣凈化組件、氣動控制組件、氣動執(zhí)行組件、輔助組件、空油壓設備,產(chǎn) 品廣泛應用于醫(yī)療器械、工業(yè)機械手、食品包裝機械、紡織機械、半導體設備、軌道交通、煙草機械、機床自動控制、真空搬運、汽車制造、教學培訓等行業(yè)。
速易可目前主要產(chǎn)品有:無桿氣缸、滑臺氣缸、止動氣缸、回轉氣缸、機械夾、回轉夾緊氣(油)壓缸、導桿氣缸、帶鎖氣缸、雙軸缸、標準型氣缸、控制閥、空氣控制組件、真空系統(tǒng)組件及相關氣動輔助零組件。
根據(jù)上節(jié)計算,在這選擇YAM63.
3.3 水平方向設計計算
3.3.1 水平方向計算
當工件處于水平位置時,擺動缸的工件扭矩最大,采用估算法,工件重20kg,長度l =1000mm。如圖3.4所示。
工件
圖3.4 受力簡圖
(1)計算扭矩[4]
(2)氣缸(伸縮)及其配件的估算扭矩 [4]
F =200N S =1m(最大行程時)
帶入公式2.9得
=200×10×1 =2000(N·M)
由于水平方向的氣缸與升降方向的有些類似,在此不在一一列舉
3.3.2 氣缸的選型
速易可目前主要產(chǎn)品有:無桿氣缸、滑臺氣缸、止動氣缸、回轉氣缸、機械夾、回轉夾緊氣(油)壓缸、導桿氣缸、帶鎖氣缸、雙軸缸、標準型氣缸、控制閥、空氣控制組件、真空系統(tǒng)組件及相關氣動輔助零組件。
根據(jù)上節(jié)計算,在這選擇YAM63.
腕部是聯(lián)結手部和臂部的部件,腕部運動主要用來改變被夾物體的方位,它動作靈活,轉動慣性小。本課題腕部具有回轉這一個自由度,可采用具有一個活動度的回轉缸驅動的腕部結構。
3.4機身結構的設計校核
臂部和機身的配置形式基本上反映了氣機械手的總體布局。本課題氣機械手的機身設計成機座式,這樣氣機械手可以是獨立的,自成系統(tǒng)的完整裝置,便于隨意安放和搬動,也可具有行走機構。臂部配置于機座立柱中間,多見于回轉型氣機械手。臂部可沿機座立柱作升降運動,獲得較大的升降行程。升降過程由電動機帶動螺柱旋轉。由螺柱配合導致了手臂的上下運動。手臂的回轉由電動機帶動減速器軸上的齒輪旋轉帶動了機身的旋轉,從而達到了自由度的要求[7-9]。
3.5螺柱的設計與校核
螺桿是氣機械手的主支承件,并傳動使手臂上下運動。
螺桿的材料選擇:
從經(jīng)濟角度來講并能滿足要求的材料為鑄鐵。
螺距 P =6mm 梯形螺紋
螺紋的工作高度 h =0.5P (3.17)
=3mm
螺紋牙底寬度 b =0.65P=0.65×6=3.9mm (3.18)
螺桿強度〖11〗 (3.19)
=30~50Mpa
螺紋牙剪切 =40
彎曲=45~55
(1)當量應力
(3.20)
式中 T——傳遞轉矩N·mm
[σ]——螺桿材料的許用應力
所以代入公式(3.20)得:
6225025d12+11236≤900d16×1012
6225025×0.0292+11236≤900×0.0296×1012
即16471pa<535340pa
合格
(2)剪切強度
(旋合圈數(shù)) (3.21)
(3.22)
=206.8×103pa
=0.206Mpa<[τ]=40Mpa
(3)彎曲強度
=0.48Mpa<[σ]=45Mpa
合格
3.6氣機械手的定位及平穩(wěn)性確定
3.6.1常用的定位方式
機械擋塊定位是在行程終點設置機械擋塊。當氣機械手經(jīng)減速運行到終點時,緊靠擋塊而定位。
若定位前已減速,定位時驅動壓力未撤除,在這種情況下,機械擋塊定位能達到較高的重復精度。一般可高于±0.5mm,若定位時關閉驅動油路而去掉工作壓力,這時氣機械手可能被擋塊碰回一個微小距離,因而定位精度變低[12]。
3.6.2影響平穩(wěn)性和定位精度的因素
氣機械手能否準確地工作,實際上是一個三維空間的定位問題,是若干線量和角量定位的組合。在許多較簡單情況下,單個量值可能是主要的。影響單個線量或角量定位誤差的因素如下:
(1)定位方式
不同的定位方式影響因素不同。如機械擋塊定位時,定位精度與擋塊的剛度和碰接擋塊時的速度等因素有關。
(2)定位速度
定位速度對定位精度影響很大。這是因為定位速度不同時,必須耗散的運動部件的能量不同。通常,為減小定位誤差應合理控制定位速度,如提高緩沖裝置的緩沖性能和緩沖效率,控制驅動系統(tǒng)使運動部件適時減速。
(3)精度
氣機械手的制造精度和安裝調速精度對定位精度有直接影響。
(4)剛度
氣機械手本身的結構剛度和接觸剛度低時,因易產(chǎn)生振動,定位精度一般較低。
(5)運動件的重量
運動件的重量包括氣機械手本身的重量和被抓物的重量。
運動件重量的變化對定位精度影響較大。通常,運動件重量增加時,定位精度降低。因此,設計時不僅要減小運動部件本身的重量,而且要考慮工作時抓重變化的影響。
(6)驅動源
氣的壓力波動及電壓、油溫的波動都會影響氣機械手的重復定位精度。因此,采用必要的穩(wěn)壓及調節(jié)氣措施。
(7)控制系統(tǒng)
開關控制、電氣比例控制和伺服控制的位置控制精度是個不相同的。這不僅是因為各種控制元件的精度和靈敏度不同,而且也與位置反饋裝置的有無有關[13]。
本課題所采用的定位精度為機械擋塊定位。
3.6.3氣機械手運動的緩沖裝置
緩沖裝置分為內緩沖和外緩沖兩種形式。內緩沖形式有氣缸端部緩沖裝置和緩沖回路等。外緩沖形式有彈性機械元件和氣緩沖器。內緩沖的優(yōu)點是結構簡單,緊湊。但有時安置位置有限;外緩沖的優(yōu)點是安置位置靈活,簡便,緩沖性能好調等,但結構較龐大。
本課題所采用的緩沖裝置為氣缸端部緩沖裝置。
當活塞運動到距氣缸端蓋某一距離時能在活塞與端蓋之間形成一個緩沖室。利用節(jié)流的原理使緩沖室產(chǎn)生臨時背壓阻力,以使運動減速直至停止,而避免硬性沖擊的裝置,稱為氣缸端部緩沖裝置[12-15]。
在緩沖行程中,節(jié)流口恒定的,稱為恒節(jié)流式氣缸端部緩沖裝置。
設計氣缸端部恒節(jié)流緩沖裝置時,(最大加速度)、(緩沖腔最大沖擊壓力)和(殘余速度)三個參數(shù)是受工作條件限制的。通常采用的辦法是先選定其中一個參數(shù),然后校驗其余兩個參數(shù)。步驟如下:
(1)選擇最大加速度
通常,amax值按氣機械手類型和結構特點選取,同時要考慮速度與載荷大小。對于重載低速氣機械手,- 取5m/s2以下,對于輕載高速氣機械手,-取5~10 m/s2
(2)計算沿運動方向作用在活塞上的外力F
水平運動時:
(3.23)
=0.25×103×π×3.62-7
=138N
(3)計算殘余速度Vr
(3.24)
m/s
3.7 元件選取及工作原理
氣壓驅動是利用壓縮氣體的壓力能來實現(xiàn)能量傳遞的一種方式,其介質主要是空氣,也包括燃氣和蒸汽。典型的氣壓傳動系統(tǒng)由以下四部分組成:
3.7.1 氣源裝置
氣源裝置是獲得具有一定能量的壓縮空氣的裝置,其主體部分是空氣壓縮機,有的還配有氣源凈化處理裝置、氣罐等附屬設備。它將原動機提供的機械能轉變?yōu)闅怏w的壓力能。氣壓傳動對氣源的要求:
(1) 要求壓縮空氣具有一定的壓力和足夠的流量。
(2) 要求壓縮空氣有一定的清潔度和干燥度。
下面對于主要的氣源裝置元件進行如下介紹:
1、空氣壓縮機
空氣壓縮機是產(chǎn)生壓縮空氣的氣壓發(fā)生裝置,是氣源主要的設備。按結構和工作原理可分為速度型和容積型兩大類。容積型壓縮機是利用特殊形狀的轉子或活塞壓縮吸入封閉容積室空氣的體積來增加空氣的壓力。容積型結構簡單、使用方便。本設計選用容積型壓縮機。
2、儲氣罐
儲氣罐可以調節(jié)氣流,減少輸出氣流的脈動,使輸出氣流連續(xù)和氣壓穩(wěn)定,也可以作為應急氣源使用,還可以進一步分離油水雜質。儲氣罐上裝有安全閥,使其極限壓力比正常工作壓力高10%,并裝有指示罐內壓力的壓力表和排污閥等。罐的型式可分為立式和臥式兩種。本設計選用立式儲氣罐,因為它的進氣口在下,出氣口在上,以利用進一步分離空氣中的油、水。
3.7.2 執(zhí)行元件
執(zhí)行元件是以壓縮空氣為工作介質產(chǎn)生機械運動,并將氣體的壓力能轉變?yōu)闄C械能的能量轉換裝置,如氣缸輸出直線往復式機械能,擺動氣缸輸出回轉擺動式機械能。
1、氣缸輸出直線往復式
氣缸是執(zhí)行元件之一。目前最常選用的是標準氣缸,其結構和參數(shù)都已系列化、標準化、通用化。水平伸縮氣缸選用單活塞桿雙作用氣缸。單活塞桿雙作用氣缸一般由缸筒、前后缸蓋、活塞、活塞桿、密封件和緊固件等組成。其工作原理:對于前伸/回縮氣缸,當左側無桿腔進氣,右側有桿腔排氣時活塞桿前伸,反之,活塞桿回縮;對于上升/下降氣缸,當上側無桿腔進氣,下側有桿腔排氣時,活塞桿下降,反之活塞桿上升。
2、擺動氣缸輸出回轉擺動式
擺動氣缸分為單葉片式和雙葉片式。
單葉片式擺動氣缸:壓縮空氣由進氣口輸入,作用在葉片上,帶動軸回轉產(chǎn)生轉矩,另一腔的空氣從排氣口排出。
雙葉片式擺動氣缸:從進氣口進入的壓縮空氣作用在一個葉片上,同時通過軸上的氣路也作用在另一葉片上帶動軸回轉。這樣雙葉片式產(chǎn)生的轉矩將是單葉片式的2倍。
本設計采用雙葉片式擺動氣缸,這樣就能產(chǎn)生更大的轉矩,以利于機械手的轉動。
3.7.3 控制元件
控制元件是用來調節(jié)壓縮空氣的壓力、流量和控制其流動方向,使執(zhí)行機構獲得必要的力、動作速度和改變運動方向,并按規(guī)定的程序工作??刂圃垂δ芊譃閴毫刂崎y、流量控制閥和方向控制閥。
1、壓力控制閥
調節(jié)和控制壓力大小的元件稱為壓力控制閥。它包括調壓閥、溢流閥、順序閥及多功能組合閥。
調壓閥是出口側壓力可調,并能保持出口側壓力穩(wěn)定的壓力控制閥。
溢流閥是在回路中的壓力達到閥的規(guī)定值時,使部分氣體從排氣側排出,以保持回路內的壓力在規(guī)定值的閥。
調速閥是根據(jù)“流量負反饋”原理設計而成的單路流量閥。調速閥一般用于執(zhí)行元件負載變化大而運動速度要求穩(wěn)定的系統(tǒng)中。調速閥根據(jù)“串聯(lián)減壓式”和“并聯(lián)溢流式”,又分為調速閥和溢流節(jié)流閥兩種主要類型。本設計選用串聯(lián)減壓式調速閥。
2、方向控制閥
方向控制閥是改變壓縮空氣流動方向和氣流通斷狀態(tài),使執(zhí)行元件的動作或狀態(tài)發(fā)生變換的控制閥,其通常可分為單向型控制閥和換向型控制閥兩類。
(1) 單向型控制閥
單向閥是指氣流只能向一個方向流動而不能反向流動通過的閥,是最簡單的單向型方向閥。在系統(tǒng)中,單向閥除單獨使用之外,經(jīng)常與流量閥、換向閥和壓力閥組合成只能單向控制的閥。單向調速閥就是單向閥與節(jié)流閥并聯(lián)而成。單向調速閥是把節(jié)流閥芯分成了上閥芯和下閥芯兩部分。當流體正向流動時,其節(jié)流過程與調速閥是一樣的,節(jié)流縫隙的大小可通過手柄進行調節(jié);當流體反向流動時,靠流體的壓力把閥芯壓下,下閥芯起單向閥作用,單向閥打開,可實現(xiàn)流體反向自由流動。當正向流動時,經(jīng)過節(jié)流閥節(jié)流。當反向流動時,單向閥打開,不節(jié)流。
(2) 換向型控制閥
換向型方向控制閥按控制方式分類,分為氣壓控制、電磁控制、人力控制。換向閥是利用閥芯和閥體間相對位置的不同來變換不同管路間的通斷關系,實現(xiàn)接通、切斷,或改變流體方向的閥。它的用途很廣,種類也很多。
換向閥的性能的主要要求是:(1)油液流經(jīng)換向閥時的壓力損失??;(2)互不相通的油口間的泄漏小;(3)換向可靠、迅速且平穩(wěn)無沖擊。
按換向閥的操縱方式有:手動式、機動式、電磁式、液動式、電液動式、式。
按工作位置數(shù)和控制的通道數(shù)有:二位二通閥、二位三通閥、二位四通閥、二位五通閥、三位四通閥、三位五通閥等。
本設計選用三位四通電磁換向閥理由如下:
(5) 電磁換向閥是利用電磁鐵吸力推動閥芯來改變閥的工作位置。由于它操作輕便,易于實現(xiàn)自動化,因此應用廣泛。
(6) 當三位四通電磁換向閥兩端電磁鐵都斷電時,閥芯處于中位,各口互不相通。
(7) 使用三位四通電磁換向閥能夠快速實現(xiàn)氣缸的正反向運動。
3.7.4 輔助元件
輔助元件是保證壓縮空氣的凈化、元件的潤滑、元件間的連接及消聲等所必須的??煞譃闅庠磧艋b置和其他輔助元件兩大類。
1、氣源凈化裝置
過濾器、調壓閥和油霧器等組合在一起稱為空氣處理單元,又稱為三聯(lián)件。壓縮的空氣中含有各種雜質,這些雜質的存在會降低元件的耐用度和性能,造成誤動作和事故,必須清除??諝馓幚韱卧褪怯脕砬宄龎嚎s空氣的雜質,提高空氣質量的元件。
2、消聲器
消聲器是降低排氣噪聲的裝置。壓縮空氣完成驅動工作后,由換向閥的排氣口排入大氣。此時的壓縮空氣是以接近音速的狀態(tài)進入大氣,由于壓力的驟然變化,使空氣急速膨脹從而發(fā)出噪音,其音量一般為80dB~100dB,為了改善勞動條件,應使用消聲器。常用的消聲器有三種類型吸收型、膨脹型和吸收膨脹型。吸收型消聲器是依靠吸聲材料來消聲的。膨脹型消聲器的結構比較簡單,相當于一段比排氣口徑大的管件,當氣流通過時,讓氣流在其內部擴散、膨脹、碰壁撞擊、反射、相互干涉而消聲。吸收膨脹型消聲器是上述兩種的結合。氣流由斜孔引入,氣流束相互撞擊、干涉、進一步減速,再通過設在消聲器內表面的吸聲材料消聲,最后排向大氣。本設計選用膨脹型消聲器。
3.7.5 真空發(fā)生器
真空發(fā)生器的作用主要是使吸盤的橡膠皮碗形成真空而將工件吸附。真空發(fā)生器的工作原理是利用噴管高速噴射壓縮空氣,在噴管出口形成射流,產(chǎn)生卷吸流動。在卷吸流動作用下,使得噴管出口周圍的空氣不斷地被抽吸走,使吸附腔內的壓力降至大氣壓以下,形成一定真空度。
3.8 回路的工作原理
機械手的工作循環(huán)是:擺動氣缸的右旋→水平手臂的伸出→垂直手臂的下降→吸物→垂直手臂的上升→水平手臂的縮回→擺動氣缸的左旋→垂直手臂的下降→放物→垂直手臂的上升→回到初始位置。系統(tǒng)中選用電磁換向閥,限位開關,實現(xiàn)氣缸的往復運動。二位二通電磁閥實現(xiàn)吸盤的吸物和放物。實現(xiàn)工作循環(huán)的工作原理如下:
(1) 擺動氣缸的右旋
按下啟動按鈕,右旋按鈕接通,使三位四通電磁換向閥12的5YA得電,閥12的閥芯右移,擺動氣缸會執(zhí)行右旋的命令。這時的氣路是:
進氣路線:2空氣處理單元→儲氣罐3→三位四通電磁換向閥12左端→單向調速閥19→擺動氣缸C的D口。
排氣路線:擺動氣缸C的E口→單向調速閥20→三位四通電磁換向閥12排氣口→調速閥8→消聲器9→排出。
(2) 水平氣缸的伸出
當擺動氣缸C右旋到指定位置時(90度),就會碰到右旋限位開關,使二位五通電磁換向閥12的5YA斷電,擺動氣缸旋轉運動會停止,經(jīng)時間繼電器延時,使三位四通電磁換向閥10的1YA得電,閥10的閥芯右移,執(zhí)行手臂前伸動作。這時的氣路是:
進氣路線:2空氣處理單元→儲氣罐3→三位四通電磁換向閥10左端