購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
附表1 機械加工工藝過程卡片
常州機電職業(yè)技術(shù)學(xué)院
機械加工工藝過程卡片
產(chǎn)品型號
JD03G—01--01
零件圖號
產(chǎn)品名稱
臺階軸
零件名稱
材料牌號
毛坯種類
毛坯外形尺寸
備注
工序號
工序名稱
工序內(nèi)容
車間
工段
設(shè)備
工藝裝備
工時
10
下料
鍛件45鋼,尺寸φ35X250
熱處理
T256,發(fā)藍
20
車
粗車左端面,光出外圓φ33X60±0.5mm
掉頭車右端面,保證尺寸248,鉆中心孔
頂住中心孔,粗車外圓φ26X166±0.5mm
粗車外圓φ23X115±0.5mm
粗車外圓φ21X29±0.5mm
半精車外圓保證尺寸φ25.5±0.1X166±0.5mm
半精車外圓保證尺寸φ22.5±0.1X88±0.5mm
半精車外圓保證尺寸φ20.5±0.1X29±0.5mm
精車外圓保證尺寸φ25.25,X166±0.5mm,倒角
精車外圓保證尺寸φ22.25X89mm
精車外圓保證尺寸φ20.25X30mm,倒角
切槽2X0.5
切槽φ21X6.5
掉頭精車右端面保證尺寸246,鉆中心孔
編制
審核
批準(zhǔn)
共 頁
第 頁
附表1 機械加工工藝過程卡片
常州機電職業(yè)技術(shù)學(xué)院
機械加工工藝過程卡片
產(chǎn)品型號
零件圖號
產(chǎn)品名稱
零件名稱
材料牌號
毛坯種類
毛坯外形尺寸
備注
工序號
工序名稱
工序內(nèi)容
車間
工段
設(shè)備
工藝裝備
工時
主軸反轉(zhuǎn)半精車外圓φ32.5mm
半精車外圓φ26.5mm
精車外圓保證尺寸φ32.25X5mm,倒角
精車外圓保證尺寸φ26.25X72.5mm
切槽2X0.5
切槽φ23X9.5,倒角
30
磨
雙頂尖,磨外圓φ26X72.5mm
磨外圓φ25X40mm
磨外圓φ22X82.5mm
磨外圓φ20X28mm
40
銑
銑鍵槽8X20,保證尺寸
50
鉆
鉆φ6K7
編制
審核
批準(zhǔn)
共 頁
第 頁
附表1 機械加工工藝過程卡片
常州機電職業(yè)技術(shù)學(xué)院
機械加工工藝過程卡片
產(chǎn)品型號
零件圖號
產(chǎn)品名稱
零件名稱
材料牌號
毛坯種類
毛坯外形尺寸
備注
工序號
工序名稱
工序內(nèi)容
車間
工段
設(shè)備
工藝裝備
工時
60
校驗
檢驗,防銹處理
編制
審核
批準(zhǔn)
共 頁
第 頁
附表1 機械加工工藝過程卡片
常州機電職業(yè)技術(shù)學(xué)院
機械加工工藝過程卡片
產(chǎn)品型號
零件圖號
產(chǎn)品名稱
零件名稱
軸套
材料牌號
毛坯種類
毛坯外形尺寸
備注
工序號
工序名稱
工序內(nèi)容
車間
工段
設(shè)備
工藝裝備
工時
10
下料
鍛件45鋼,尺寸φ35X100
20
熱處理
T256,發(fā)藍
30
車
車右端面
粗車外圓φ31±0.5X35±0.5
半精車外圓φ30.3±0.1X35±0.5
精車外圓φ30X35±0.5保證光潔度1.6
切斷尺寸31±0.5
夾已車外圓精車左端面,保證尺寸30和垂直度
鉆孔φ18
粗鏜內(nèi)孔至φ19±0.1
半精鏜內(nèi)孔至φ19.8±0.1
精鏜內(nèi)孔至φ20H8,保證光潔度1.6
40
鉆
用鉆模板找位鉆孔φ6K7,保證尺寸和光潔度
編制
審核
批準(zhǔn)
共 頁
第 頁
附表1 機械加工工藝過程卡片
常州機電職業(yè)技術(shù)學(xué)院
機械加工工藝過程卡片
產(chǎn)品型號
零件圖號
產(chǎn)品名稱
零件名稱
材料牌號
毛坯種類
毛坯外形尺寸
備注
工序號
工序名稱
工序內(nèi)容
車間
工段
設(shè)備
工藝裝備
工時
50
校驗
檢驗,防銹處理
編制
審核
批準(zhǔn)
共 頁
第 頁
Smart Machining Systems
Program Manager: M. Alkan Donmez
Phone number: 301-975-6618
Email: alkan.donmez@nist.gov
Program Funding: $2.8 M
FTEs: 9
Program Goal
Develop metrology methods and standards that enable U.S. industry to characterize, monitor, and improve the accuracy, reliability and productivity of machining operations, leading to the realization of autonomous smart machining systems.
Problem
Coalition on Manufacturing Technology Infrastructure (CTMI) identified an urgent need for “enabling dramatic improvements in the productivity and cost of designing,planning, producing, and delivering high-quality products within short cycle times.” CTMI identified thrust areas in process defi-nition and design, smart equipment/process control, fundamental understanding of process and equip-ment, health monitoring/assurance and integration framework. It also stated that metrology and standards are key enablers of these thrust areas. This program aims to facilitate the development and validation of such measurement methods and stan-dards. A successful program will enable the smart machining systems to cost effective manufacture the first and every part to specification and on schedule.
Approach
The program focuses on developing a methodology for seamlessly integrating all science-based under-standing or representation of material removal processes and machining system performance to carry out dynamic and global optimization. There are three programmatic focus areas: (1) performance characterization and representation; (2) process opti-mization and control; and (3) condition monitoring.
Modern metrology instruments allow development of new machine tool performance characterization techniques.
Goal
Develop, validate, and demonstrate the metrology, standards, and infrastructural tools that enable U.S.
industry to characterize, monitor, and improve the accuracy, reliability and productivity of machiningoperations, leading to the realization of autonomous smart machining systems.
Customer Need & Intended Impact
Machining systems are used for discrete part and tooling fabrication and hence are integral to the manufacture of durable goods. Annual U.S. expenses on machining operations total more than $200 billion, about 2% of Gross Domestic Product (GDP). A study conducted by the Association for Manufacturing Technology (AMT) in 2000 indicated that the advancements in machine tools and related manufacturing technologies created benefits worth a total of nearly $1 trillion in the U.S. over the period 1994-1999. These benefits resulted from gains in productivity, declines in inventory requirements, and manufacturing related product improvements for price, quality and energy efficiency.
Over the last two years there has been an intensive effort originated by three NIST/MEL programs, Smart Machine Tools, Predictive Process Engineering and Intelligent Open Architecture Control that have evolved toward a common theme of Smart Machining. These MEL efforts joined with the National Science Foundation (NSF) and Integrated Manufacturing Technology Initiative (IMTI) to organize and conduct a Smart Machine Tool Workshop in December 2002 bringing government, industry and academia together to identify the U.S. needs in technology development in the area of smart machine tools and machining systems. As a result of this workshop, U.S. manufacturing industry represented by Association for Manufacturing Technology (AMT), National Center for Defense Manufacturing and Machining (NCDMM), National Center for Manufacturing Sciences (NCMS), National Coalition for Advanced Manufacturing (NACFAM), National Tooling & Machining Association (NTMA), Society of Manufacturing Engineers (SME), and TechSolve, established the Coalition on Manufacturing Technology Infrastructure (CMTI) in 2003. This coalition produced a technology roadmap for the Smart Machine Platform Initiative (SMPI) in March 2004. The original three MEL programs strongly influenced the structure and content of the SMPI technology roadmap. The Smart Machining Systems (SMS) program continues this evolution and is closely aligned with the SMPI technology plan.
CMTI indicates in its 2004 Technology Plan that productivity and quality gains achieved by the U.S. manufacturing industry over the last decade are challenged by low-wage countries. As a result, outsourcing of manufacturing in economically critical industries such as automotive, aerospace, consumer products, and heavy equipment is increasing. On the other hand, advanced technologies and engineering innovations are bred in advanced manufacturing environments facilitated by significant amount of interactions. Losing these manufacturing environments, the U.S. is in danger of losing its edge in advanced technology and innovations as well.
CMTI identified an urgent need to reverse this trend by “reinvention of the basic manufacturing environment, enabling dramatic improvements in the productivity and cost of designing, planning, producing, and delivering high-quality products within short cycle times.” CMTI further identified five primary thrust areas to address the challenges facing the U.S. manufacturing sector that produces metal parts and fabrications:
a. Process definition and design
b. Smart equipment operation and process control
c Fundamental process and equipment understanding
d. Health monitoring and assurance
e. Integration framework
Metrology and standards are identified as key enablers of these thrust areas. The Smart Machining Systems (SMS) program aims to facilitate the development and validation of such measurement and related technologies and standards.
A successful program will enable cost effective manufacture of first and every part to specification and on schedule by the smart machining systems. Such systems will complement and enhance the skills of machine operators, process planners and design engineers in the manufacturing enterprise by sharing the knowledge and information among these functions to optimize the design and manufacturing processes to their fullest. Loaded with high fidelity process and performance models and optimization tools, smart machining systems will behave in a predictable and controllable manner. This will eliminate trial-and-error based prototype development and reduce time to market, and thus advance the capability of U.S. industry to respond to the global pressures of mass customization of high quality products.
An advanced manufacturing environment is conducive to engineering innovations. Reversing the trend of outsourcing to low-wage countries will enable U.S. industry to regain its competitive edge in innovations and productivity. This competitive advantage will minimize the adverse effects of trade imbalances on the U.S. economy.
Technical Approach & Program Objectives
To enable cost effective manufacture of first and every part to specification and on schedule, a smart machining system will have the following characteristics:
. It will know its capabilities/condition and will communicate this information
. It will monitor and optimize its operations autonomously
. It will assess the quality of its work/output
. It will learn and improve itself over time
These characteristics require a science-based understanding and unambiguous representation of material removal processes and machining system performance.
There are three programmatic focus areas:
(1) performance characterization and representation;
(2) process optimization and control; and
(3) condition monitoring.
Development of dynamic and global optimization tools and methodology that will integrate the physical understanding of all system components will be the unifying theme of all these focus areas. To meet program goals and objectives as well as communicate the applications of developed concepts and tools to stake holders, the program will focus on three types of projects: development of fundamental methods and data; development of demonstration platforms; and high-risk projects with potential paradigm changing outcomes. Demonstration platforms will also serve to promote stronger collaboration with equipment/software vendors leading to better outreach.
Objective #1: Dynamic optimization
Develop a generic methodology and associated data and dynamic process optimization, based on design requirements, integrating all related process and equipment knowledge and information.
As stated in SMPI Technology Plan, the ability to account for and accurately predict or describe the propagation of errors in a machining platform is vital for estimating and emulating real-world performance, but represents a major gap in the current technology. Although significant information related to performance of machine tools, machining processes, cutting tools, and materials already exist, there is no unified methodology to combine all this information to generate optimum machining conditions with expected outcomes. Furthermore, very little of this information is standardized, making the optimization even more difficult to generalize.
Accomplishing this objective will enable science-based process design and quality control, which are key requirements for smart machining systems. A generic optimization capability based on well-defined cause and effect relationships will also be an enabler for reasoning and learning capability of smart machining systems.
Objective # 2: Equipment characterization
Develop measurement methods, models and standards to characterize and communicate the machine tool performance under operating conditions.
Information about machine tool performance forms one of the primary foundations necessary to enable manufacturing the first and every part to specifications. Traditionally machine tool performance is determined using a series of tests conducted under quasi-static conditions. There are series of national and international standards describing these tests. These performance parameters are used to buy and sell machines as well as to predict the capability of machine tools for specific family of parts. The differences between the national and international standards cause the vendors and the users of the machines tools great difficulty and confusion about the claimed performance parameters for contractual and capability estimation purposes. Harmonization among these standards is considered a first priority for this objective. Furthermore, the relationships between the quasi-static performance parameters and obtainable part tolerances are not very well defined because under operating conditions the performance of the machine is not the same as for the quasi-static conditions. The AMT roadmap targets an 80% improvement in accuracy of machine tool between 1995 and 2010. Machine tool vendors and users have already exhausted their options to improve the performance based on quasi-static machine behavior. Measuring and modeling of performance under operating conditions are the main enablers left to improve machine performance.
Objective #3: Next generation NC
Develop, implement and demonstrate all necessary
STEP-NC compliant interfaces and data specifications for seamless operation of model-based machine control.
Smart machining systems need a rich set of information to fully exploit their capabilities. Current Numerical Control (NC) programs are written in “G codes” which express primitive tool paths. These programs do not include information about as-is or to-be geometry, features, tolerances, material properties, fixture location, material removal rates or other information developed during the design and process planning stages. This information is stripped out when converting to G codes, severely limiting the ability of the controller to optimize machining or react to disturbances. Fine tuning processes to maximize performance with current methods is very expensive, tedious and time consuming, and cost effective only for very large part lots. Mass customization and penetration to small manufacturers remain elusive. STEP-NC, an international standard - ISO 14649 “Data model for computerized Numerical Controllers,” is the enabling standard that provides the potential for using the digital product model as machine tool input. STEP-NC extends STEP (ISO 10303) – the Standard for the Exchange of Product model data into the NC world.
9
精密機器制造系統(tǒng)
程序經(jīng)理:M.Alkan Donmez
電話號碼:301-975-6618
電子郵件:alkan.donmez@nist.gov
課題資助:$2.8M
PTE:9
課題目標(biāo)
開發(fā)使美國產(chǎn)業(yè)描繪、監(jiān)測和改進機器操作準(zhǔn)確性、可靠性和生產(chǎn)力的計量學(xué)方法和標(biāo)準(zhǔn),引導(dǎo)對自治精密機器制造的系統(tǒng)的認(rèn)識。
問題
制造業(yè)技術(shù)基礎(chǔ)設(shè)施(CTMI)確定了使在短的循環(huán)周期內(nèi),生產(chǎn)力、設(shè)計、計劃、生產(chǎn)成本、提供高質(zhì)量產(chǎn)品成為可能是一個迫在需求。CTMI確定了在流程定義和設(shè)計,精密設(shè)備,過程控制,對過程和設(shè)備,健康監(jiān)督、擔(dān)保和綜合框架的根本理解的延伸區(qū)域。它也闡明了計量學(xué)和標(biāo)準(zhǔn)是這些延伸區(qū)域關(guān)鍵的使能者。這個課題的目的是促進這些測量方法的發(fā)展和有效。一個成功的課題首先將使精密機器制造系統(tǒng)有效的制造,和每個部分在日程表的詳述。
方法
課題集中于開發(fā)集成物質(zhì)撤除過程的所有基于科學(xué)的理解或表示法和無縫用機器制造系統(tǒng)性能的方法學(xué)的執(zhí)行動態(tài)和全球性優(yōu)化。有三個綱領(lǐng)性焦點區(qū)域:1.表現(xiàn)描述特性和表示法:2.處理優(yōu)化和控制:3.條件監(jiān)測
現(xiàn)代計量學(xué)一起允許新機械工具表現(xiàn)描述特性技術(shù)的發(fā)展。
精密機器制造系統(tǒng)
目標(biāo)
發(fā)展、確認(rèn)和展示使美國產(chǎn)業(yè)描繪、監(jiān)測和改進機器操作準(zhǔn)確性、可靠性和生產(chǎn)力的計量學(xué)、標(biāo)準(zhǔn)和基礎(chǔ)建設(shè)的工具,引導(dǎo)自治精密機器制造的系統(tǒng)的認(rèn)識。
用戶需求&意欲的沖擊
機器制造系統(tǒng)用于分離部分工具加工的制造,因此耐用品是缺一不可的。每年美國,花費在機器操作上共計超過2000億美圓,大約2%國民生產(chǎn)總值。在2000年,由制造技術(shù)協(xié)會進行的研究表明機械工具和相關(guān)制造技術(shù)的改進在1994-1999年期間創(chuàng)造的價值總共接近1兆美圓。這些好處起因于生產(chǎn)力的獲取,存貨要求的下降和制造業(yè)相關(guān)產(chǎn)品改善的價格、質(zhì)量和節(jié)能。
在過去二年間,有一個大成果,起源于三個NIST/MEL課題,巧妙的機械工具,有預(yù)測性的程序工程和智能的開放式體系結(jié)構(gòu)控制。這些MEL成就了國家基金會(美國國家科學(xué)基金會)和集成制造技術(shù)創(chuàng)辦協(xié)會(IMTI)在2002年12月一起舉行一次精密機械工具研討會帶來政府、產(chǎn)業(yè)和學(xué)術(shù)界一起辨認(rèn)美國在精密機械工具和機器制造系統(tǒng)區(qū)域技術(shù)發(fā)展的需要。由于這個車間,美國制造工業(yè)由制造業(yè)技術(shù)協(xié)會,全國防御制造業(yè)和機器制造中心,全國制造科學(xué),全國先進制造聯(lián)盟,全國加工與機器制造聯(lián)盟,制造工程師協(xié)會和技術(shù)解決協(xié)會代表的美國工業(yè),在2003年建立了機械制造技術(shù)基本設(shè)施聯(lián)盟。在2004年3月,這個聯(lián)盟為精密機器平臺主動性提供了技術(shù)路線圖。原始的三個MEI課題強烈影響了精密機器制造平臺主動性技術(shù)路線圖的結(jié)構(gòu)和內(nèi)容。精密機器制造系統(tǒng)保持著這個演變并且與精密機器制造平臺主動性技術(shù)計劃緊密地排列著。
在它的2004年技術(shù)計劃中CMTI表明,過去的十年由美國制造工業(yè)達到生產(chǎn)力和質(zhì)量的增長被底薪水國家挑戰(zhàn)。結(jié)果,采購制造在經(jīng)濟上重要產(chǎn)業(yè),譬如汽車、航空航天、消費品和重的設(shè)備增長著。另一方面,先進技術(shù)和工程創(chuàng)新在由重大相當(dāng)數(shù)量相互作用促進的先進制造環(huán)境里助長著。丟失這些制造環(huán)境,美國就會丟失它在先進技術(shù)和創(chuàng)新邊緣的危險。
CMTI辨認(rèn)了緊急需要扭轉(zhuǎn)這個趨向由“基本的制造環(huán)境的再改造”,使生產(chǎn)力,設(shè)計,計劃,生產(chǎn)成本和在短期內(nèi)交付優(yōu)質(zhì)產(chǎn)品得到較大改善,CMTI進一步辨認(rèn)了五個主要推力區(qū)域演講面對生產(chǎn)金屬零件和制造的美國制造業(yè)的挑戰(zhàn)。
一個成功的課題將通過SMS成本有效,首先制造第一和規(guī)定和日程表中的沒一部分由精密機器制造的系統(tǒng),這樣的系統(tǒng)補全和提高在制造業(yè)企業(yè)中的機器操作員,流程計劃者和設(shè)計工程師技能,通過由分享知識和信息在這些作用之中優(yōu)選設(shè)計和制造過程達到最高水平。
通過高精度過程和程序模型和優(yōu)化工具裝載,精密機器制造系統(tǒng)將以可預(yù)測和可控制的方式表現(xiàn)出來。這將消滅基于原型發(fā)展的實驗和錯誤,也將減少上市時間,因而推進美國產(chǎn)業(yè)的能力反應(yīng)于高質(zhì)量產(chǎn)品的許多定制全球性壓力。
一個先進的制造環(huán)境有助于工程學(xué)創(chuàng)新。扭轉(zhuǎn)采購低薪水國家趨向,將使美國產(chǎn)業(yè)收復(fù)它在創(chuàng)新和生產(chǎn)力上的競爭力。這競爭優(yōu)勢使貿(mào)易逆差減到對美國經(jīng)濟最小的不利影響。
技術(shù)方法&課題宗旨
為了首先使制造成本有效和每個部分都按照規(guī)格和日程表運行,一個精密機器制造將有如下特征:
.它將知道自己的能力,環(huán)境,并傳達這些信息
.它將自動監(jiān)測和選擇操作
.它將估計它的工作和產(chǎn)品的質(zhì)量
.它將隨時間慢慢地學(xué)會并且改進自己
這些特征要求一種基于對物質(zhì)撤除過程和機器制造系統(tǒng)的理解和毫不含糊的標(biāo)識法的科學(xué)。
有三個綱領(lǐng)性焦點區(qū)域:
⑴表現(xiàn)描述特征和表示法;
⑵處理優(yōu)化和控制;
⑶條件監(jiān)測。
這些對所有系統(tǒng)組分的物理理解集成的動態(tài)的發(fā)展和全球性優(yōu)化工具和方法學(xué)的發(fā)展,將是所有這些焦點區(qū)域的統(tǒng)一題材。
為了符合課題目標(biāo)和宗旨,還有向股東交流開發(fā)概念和工具的應(yīng)用,課題將著重于三個類型的項目:根本方法和數(shù)據(jù)的發(fā)展;示范平臺的發(fā)展和潛在的結(jié)果變化的范例的高風(fēng)險項目。示范平臺同樣也將服務(wù)于促進于設(shè)備/軟件賣主更強的合作,以致于更好的勝出。
宗旨#1:動態(tài)的最優(yōu)化
開發(fā)一個基于設(shè)計要求、集成所有相關(guān)過程和設(shè)備知識、信息的普通方法論和關(guān)聯(lián)的數(shù)據(jù),模型說明書,完成動態(tài)過程的最優(yōu)化。
依照在SMPI技術(shù)計劃中的陳述,在一個用機器制造的平臺上,解決、正確地預(yù)測或描述錯誤的普及對評估和超越真實世界但在當(dāng)前技術(shù)代表了一個主要的空白的能力是至關(guān)重要的。雖然與機床,機器制造過程,切割工具和材料相關(guān)的重大的信息已經(jīng)存在,但是卻還有一個統(tǒng)一的方法學(xué)去結(jié)合所有這些信息去產(chǎn)生期望的最好條件。此外,這些信息中很少是被規(guī)范化的,這使得最優(yōu)化甚至更加難以推斷。
實現(xiàn)這個宗旨將使基于科學(xué)的過程設(shè)計和質(zhì)量控制成為可能,這些都是精密機器制造系統(tǒng)的關(guān)鍵要求。一個基于明確定義的起因和作用關(guān)系的普通優(yōu)化能力也將會成為推理和學(xué)習(xí)精密機器制造系統(tǒng)能力的使能者。
宗旨#2:設(shè)備描述特性
開發(fā)測量方法、模型和標(biāo)準(zhǔn)去描繪和傳達在操作條件下的機床性能。
關(guān)于機床性能的信息形成主要基礎(chǔ)中的一個必要使得制造第一和每部分符合規(guī)格。傳統(tǒng)上,機床性能在類似靜態(tài)環(huán)境下使用一系列測試后確定下來的。有一系列全國和國際標(biāo)準(zhǔn)描述這些測試。這些性能參數(shù)被使用在購買和出售機器上,也預(yù)測由于特殊零件家族的機床性能。全國和國際標(biāo)準(zhǔn)的不同引起機床賣主和買主的難處和困惑,是關(guān)于被要求的性能參數(shù)為契約和能力估計的目的。這些標(biāo)準(zhǔn)之間的和諧是這個宗旨優(yōu)先考慮的事。此外,類似靜態(tài)條件下的性能參數(shù)與可獲得的零件包含參數(shù)之間的關(guān)系不能很好的被定義,因為在操作環(huán)境下,機器的性能不和在類似靜態(tài)環(huán)境下的一樣。AMT路線圖描述了在1995年到2010年之間機床準(zhǔn)確性的改善。機床賣主和買主已經(jīng)耗盡他們的選擇去改進基于類似條件下機床運動性能的改進。在操作條件下性能測量和塑造是留下的主要改進機器性能的使能者。
宗旨#3:下一代數(shù)字控制
開發(fā)、實施和展示所有必要的步進數(shù)字控制服從的接口和數(shù)據(jù)規(guī)格,是為了基于模型的機器控制的無縫操作。
精密機器制造系統(tǒng)需要一套豐富的信息來充分利用它們的能力。當(dāng)前的數(shù)字控制程序用G代碼輸寫,它表現(xiàn)原始的刀具運動軌跡。這些程序不包括現(xiàn)在或?qū)淼膸缀?、性能、公差、物質(zhì)物產(chǎn)、裝置地點、物質(zhì)撤除率或在設(shè)計和過程計劃階段被開發(fā)出來的信息。當(dāng)轉(zhuǎn)化為G代碼時,這些信息就被撤除,嚴(yán)格限制控制器的能力去優(yōu)化機器或?qū)Ω蓴_起反應(yīng)。性能最大優(yōu)化過程,用當(dāng)前的方法是非常昂貴、繁瑣和費時的,并且僅僅使大的零件有效。許多定制和滲透對小制造商仍然是難以捉摸的。步進數(shù)字控制,國際標(biāo)準(zhǔn)-ISO14649,計算機數(shù)字控制數(shù)據(jù)模型是提供使用數(shù)字產(chǎn)品模型作為機床輸入的使能標(biāo)準(zhǔn)。步進數(shù)字控制擴大可步伐(ISO10303)-在數(shù)字控制世界湊模型數(shù)據(jù)交換的標(biāo)準(zhǔn)。