高考數(shù)學(xué) 10.1 分類(lèi)加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理課件.ppt
《高考數(shù)學(xué) 10.1 分類(lèi)加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理課件.ppt》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《高考數(shù)學(xué) 10.1 分類(lèi)加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理課件.ppt(51頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第十章 計(jì)數(shù)原理、概率、隨機(jī)變量 及其分布 第一節(jié) 分類(lèi)加法計(jì)數(shù)原理 與分步乘法計(jì)數(shù)原理,【知識(shí)梳理】 1.必會(huì)知識(shí) 教材回扣 填一填 (1)分類(lèi)加法計(jì)數(shù)原理: 完成一件事有_______________,在第1類(lèi)方案中有m種不同的方法, 在第2類(lèi)方案中有n種不同的方法,完成這件事共有N=____種方法. (2)分步乘法計(jì)數(shù)原理: 完成一件事需要_________,做第1步有m種不同的方法,做第2步有 n種不同的方法,完成這件事共有N=___種方法.,兩類(lèi)不同的方案,m+n,兩個(gè)步驟,mn,2.必備結(jié)論 教材提煉 記一記 分步用乘法、分類(lèi)用加法. 3.必用技法 核心總結(jié) 看一看 (1)常用方法:直接法、間接法. (2)數(shù)學(xué)思想:分類(lèi)討論、數(shù)形結(jié)合.,(3)記憶口訣: 排組分清,加乘分明, 有序排列,無(wú)序組合, 分類(lèi)相加,分步相乘.,【小題快練】 1.思考辨析 靜心思考 判一判 (1)在分類(lèi)加法計(jì)數(shù)原理中,兩類(lèi)不同方案中的方法可以相同.( ) (2)在分類(lèi)加法計(jì)數(shù)原理中,兩類(lèi)不同方案中的方法都能直接完成這件事.( ) (3)在分步乘法計(jì)數(shù)原理中,各種方法中完成某個(gè)步驟的方法是各不相同的.( ) (4)在分步乘法計(jì)數(shù)原理中,事件是分兩步完成的,其中任何一個(gè)單獨(dú)的步驟都能完成這件事.( ),【解析】(1)錯(cuò)誤.在分類(lèi)加法計(jì)數(shù)原理中,兩類(lèi)不同的方案中,方法是不相同的. (2)正確.在分類(lèi)加法計(jì)數(shù)原理中,每類(lèi)中的各種方法必須能完成這件事. (3)錯(cuò)誤.在分步乘法計(jì)數(shù)原理中,各種方法中完成某個(gè)步驟的方法可以相同. (4)錯(cuò)誤.如果單獨(dú)的步驟能完成這件事,這就不是某一步了,而是一類(lèi). 答案:(1)× (2)√ (3)× (4)×,2.教材改編 鏈接教材 練一練 (1)(選修2-3P10T1改編)乘積(a+b+c)(d+e+f+h)(i+j+k+l+m)展開(kāi)后共有 項(xiàng). 【解析】由(a+b+c)(d+e+f+h)(i+j+k+l+m)展開(kāi)式各項(xiàng)都是從每個(gè)因式中選一個(gè)字母的乘積,由分步乘法計(jì)數(shù)原理可得:其展開(kāi)式共有3×4×5=60項(xiàng). 答案:60,(2)(選修2-3P12T5改編)已知集合M={1,-2,3},N={-4,5,6,-7},從M,N這兩個(gè)集合中各選一個(gè)元素分別作為點(diǎn)的橫坐標(biāo)、縱坐標(biāo),則這樣的坐標(biāo)在直角坐標(biāo)系中可表示第一、第二象限內(nèi)不同的點(diǎn)的個(gè)數(shù)是 . 【解析】分兩類(lèi):第一類(lèi),第一象限內(nèi)的點(diǎn),有2×2=4(個(gè));第二類(lèi),第二象限內(nèi)的點(diǎn),有1×2=2(個(gè)).由分類(lèi)加法計(jì)數(shù)原理可得:共有4+2=6個(gè). 答案:6,3.真題小試 感悟考題 試一試 (1)(2015·濱州模擬)甲、乙兩人從4門(mén)課程中選修2門(mén),則甲、乙所選課程中恰有1門(mén)相同的選法有( ) A.6種 B.12種 C.24種 D.30種,【解析】選C.分步完成,首先甲、乙兩人從4門(mén)課程中同選1門(mén),有4種方法,其次是甲從剩下的3門(mén)課程中任選1門(mén),有3種方法,最后乙從剩下的2門(mén)課程中任選1門(mén),有2種方法.于是,甲、乙所選課程中恰有1門(mén)相同的選法共有4×3×2=24(種).,(2)(2015·成都模擬)某城市有3個(gè)演習(xí)點(diǎn)同時(shí)進(jìn)行消防演習(xí),現(xiàn)將4個(gè)消防隊(duì)分配到這3個(gè)演習(xí)點(diǎn),若每個(gè)演習(xí)點(diǎn)至少安排1個(gè)消防隊(duì),則不同的分配方案種數(shù)為( ) A.12 B.36 C.72 D.108,【解析】選B.先從4個(gè)消防隊(duì)中選出2個(gè)作為一個(gè)整體,有 種選法; 再將三個(gè)整體進(jìn)行全排列,有 種方法;根據(jù)分步乘法計(jì)數(shù)原理得不 同的分配方案種數(shù)為 =36.,(3)(2015·長(zhǎng)春模擬)直線(xiàn)Ax+By=0,若從集合E={0,1,3,5,7,8}中每次取出兩個(gè)不同的數(shù)作為A,B的值,則可表示 條不同的直線(xiàn). 【解析】若A或B中有一個(gè)為零時(shí),有2條;若AB≠0時(shí),有5×4=20條,由分類(lèi)加法計(jì)數(shù)原理可知:共有2+20=22條不同的直線(xiàn). 答案:22,考點(diǎn)1 分類(lèi)加法計(jì)數(shù)原理 【典例1】(1)滿(mǎn)足a,b∈{-1,0,1,2},且關(guān)于x的方程ax2+2x+b=0有實(shí)數(shù)解的有序數(shù)對(duì)(a,b)的個(gè)數(shù)為( ) A.14 B.13 C.12 D.9 (2)三邊長(zhǎng)均為正整數(shù),且最大邊長(zhǎng)為11的三角形的個(gè)數(shù)是 . 【解題提示】(1)方程ax2+2x+b=0可能是一次方程,也可能是二次方程. (2)構(gòu)成三角形的條件為兩邊之和大于第三邊.,【規(guī)范解答】(1)選B.由于a,b∈{-1,0,1,2}, ①當(dāng)a=0時(shí),有x=- 為實(shí)根,則b可取-1,0,1,2,有4種可能; ②當(dāng)a≠0時(shí),方程有實(shí)根, 所以Δ=4-4ab≥0,所以ab≤1.(*) 當(dāng)a=-1時(shí),滿(mǎn)足(*)式的b可取-1,0,1,2,有4種可能. 當(dāng)a=1時(shí),b可取-1,0,1,有3種可能. 當(dāng)a=2時(shí),b可取-1,0,有2種可能. 所以由分類(lèi)加法計(jì)數(shù)原理,有序數(shù)對(duì)(a,b)共有4+4+3+2=13(個(gè)).,(2)另兩邊長(zhǎng)用x,y(x,y∈N*)表示,且不妨設(shè)1≤x≤y≤11,要構(gòu)成三角形,必須x+y≥12.當(dāng)y取11時(shí),x可取1,2,3,…,11,有11個(gè)三角形;當(dāng)y取10時(shí),x可取2,3,…,10,有9個(gè)三角形;…;當(dāng)y取6時(shí),x只能取6,只有1個(gè)三角形. 所以所求三角形的個(gè)數(shù)為11+9+7+5+3+1=36. 答案:36,【易錯(cuò)警示】解答本例題(1)有三點(diǎn)容易出錯(cuò): (1)將方程ax2+2x+b=0誤認(rèn)為二次方程,沒(méi)有討論當(dāng)a=0時(shí)的情況. (2)容易漏掉a與b相等的情況. (3)不能分清是分步還是分類(lèi),造成結(jié)論錯(cuò)誤.,【互動(dòng)探究】本題(2)條件不變,則構(gòu)成鈍角三角形的個(gè)數(shù)是多少? 【解析】另兩邊長(zhǎng)用x,y(x,y∈N*)表示,且不妨設(shè)1≤x≤y≤11,要構(gòu)成三角形,必須x+y≥12,由余弦定理可知:x2+y2-1120,滿(mǎn)足以上條件的x,y有:當(dāng)y=10時(shí),x可取2,3,4;當(dāng)y=9時(shí),x可取3,4,5,6;當(dāng)y=8時(shí),x可取4,5,6,7;當(dāng)y=7時(shí),x可取5,6,7;當(dāng)y=6時(shí),x可取6.由分類(lèi)加法計(jì)數(shù)原理可知:共有3+4+4+3+1=15個(gè).,【規(guī)律方法】 1.分類(lèi)加法計(jì)數(shù)原理的實(shí)質(zhì) 分類(lèi)加法計(jì)數(shù)原理針對(duì)的是“分類(lèi)”問(wèn)題,完成一件事要分為若干類(lèi),各類(lèi)的方法相互獨(dú)立,每類(lèi)中的各種方法也相對(duì)獨(dú)立,用任何一類(lèi)中的任何一種方法都可以單獨(dú)完成這件事.,2.使用分類(lèi)加法計(jì)數(shù)原理遵循的原則 有時(shí)分類(lèi)的劃分標(biāo)準(zhǔn)有多個(gè),但不論是以哪一個(gè)為標(biāo)準(zhǔn),都應(yīng)遵循“標(biāo)準(zhǔn)要明確,不重不漏”的原則. 提醒:對(duì)于分類(lèi)問(wèn)題所含類(lèi)型較多時(shí)也可以考慮使用間接法.,【變式訓(xùn)練】在連接正八邊形的三個(gè)頂點(diǎn)而成的三角形中,與正八邊形有公共邊的三角形有 個(gè). 【解析】分兩類(lèi):①有一條公共邊的三角形共有8×4=32(個(gè));②有兩條公共邊的三角形共有8個(gè).故共有32+8=40(個(gè)). 答案:40,【加固訓(xùn)練】1.某學(xué)生去書(shū)店,發(fā)現(xiàn)3本好書(shū),決定至少買(mǎi)其中1本,則購(gòu)買(mǎi)方式共有( ) A.3種 B.6種 C.7種 D.9種 【解析】選C.分3類(lèi):買(mǎi)1本書(shū),買(mǎi)2本書(shū)和買(mǎi)3本書(shū),各類(lèi)的購(gòu)買(mǎi)方式依次有3種、3種和1種,故購(gòu)買(mǎi)方式共有3+3+1=7(種).,2.若x,y∈N*,且x+y≤6,則有序數(shù)對(duì)(x,y)共有 個(gè). 【解析】當(dāng)x=1時(shí),y可取的值為5,4,3,2,1,共5個(gè); 當(dāng)x=2時(shí),y可取的值為4,3,2,1,共4個(gè); 當(dāng)x=3時(shí),y可取的值為3,2,1,共3個(gè); 當(dāng)x=4時(shí),y可取的值為2,1,共2個(gè); 當(dāng)x=5時(shí),y可取的值為1,共1個(gè); 由分類(lèi)加法計(jì)數(shù)原理,不同的數(shù)對(duì)(x,y)共有5+4+3+2+1=15(個(gè)). 答案:15,考點(diǎn)2 分步乘法計(jì)數(shù)原理 【典例2】(1)教學(xué)大樓共有五層,每層均有兩個(gè)樓梯,由一層到五層的走法有( ) A.10種 B.25種 C.52種 D.24種 (2)用0,1,…,9十個(gè)數(shù)字,可以組成有重復(fù)數(shù)字的三位數(shù)的個(gè)數(shù)為 . 【解題提示】(1)從一層到五層可分步來(lái)完成,每一步有2種走法. (2)可用間接法來(lái)完成此事.,【規(guī)范解答】(1)選D.共分4步:一層到二層2種,二層到三層2種,三層到四層2種,四層到五層2種,一共有24種. (2)能夠組成三位數(shù)的個(gè)數(shù)是9×10×10=900,能夠組成無(wú)重復(fù)數(shù)字的三位數(shù)的個(gè)數(shù)是9×9×8=648,故能夠組成有重復(fù)數(shù)字的三位數(shù)的個(gè)數(shù)是900-648=252. 答案:252,【規(guī)律方法】 1.分步乘法計(jì)數(shù)原理的實(shí)質(zhì) 分步乘法計(jì)數(shù)原理針對(duì)的是“分步”問(wèn)題,完成一件事要分為若干步,各個(gè)步驟相互依存,完成其中的任何一步都不能單獨(dú)完成該件事,只有當(dāng)各個(gè)步驟都完成后,才算完成這件事.,2.使用分步乘法計(jì)數(shù)原理的關(guān)注點(diǎn) (1)明確題目中的“完成這件事”是什么,確定完成這件事需要幾個(gè)步驟,且每步都是獨(dú)立的. (2)將完成這件事劃分成幾個(gè)步驟來(lái)完成,各步驟之間有一定的連續(xù)性,只有當(dāng)所有步驟都完成了,整個(gè)事件才算完成,這是分步的基礎(chǔ),也是關(guān)鍵.從計(jì)數(shù)上來(lái)看,各步的方法數(shù)的積就是完成事件的方法總數(shù).,【變式訓(xùn)練】1.(2015·臨沂模擬)如圖所示的陰影部分由方格紙上3個(gè)小方格組成,我們稱(chēng)這樣的圖案為L(zhǎng)型(每次旋轉(zhuǎn)90°仍為L(zhǎng)型圖案),那么在由4×5個(gè)小方格組成的方格紙上可以畫(huà)出不同位置的L型圖案的個(gè)數(shù)是( ) A.16 B.32 C.48 D.64,【解析】選C.每四個(gè)小方格(2×2型)中有L型圖案4個(gè),共有2×2型小方格12個(gè),所以共有L型圖案4×12=48(個(gè)).故選C.,2.從6個(gè)人中選4個(gè)人分別到巴黎、倫敦、悉尼、莫斯科四個(gè)城市游覽,要求每個(gè)城市至少有一人游覽,每人只游覽一個(gè)城市,且這6個(gè)人中,甲、乙兩人不去巴黎游覽,則不同的選擇方案共有 種. 【解析】分步完成此事,第一步選1人去巴黎有4種方法,第二步選1人去倫敦有5種方法,第三步選1人去悉尼有4種方法,第四步選1人去莫斯科有3種方法,由分步乘法計(jì)數(shù)原理可知:共有4×5×4×3=240(種). 答案:240,【加固訓(xùn)練】1.設(shè)集合A={-1,0,1},集合B={0,1,2,3},定義A*B= {(x,y)|x∈A∩B,y∈A∪B},則A*B中元素的個(gè)數(shù)是( ) A.7 B.10 C.25 D.52 【解析】選B.由題意知本題是一個(gè)分步乘法計(jì)數(shù)原理,因?yàn)榧螦= {-1,0,1},集合B={0,1,2,3},所以A∩B={0,1},A∪B={-1,0,1,2,3},所以x有2種取法,y有5種取法,所以根據(jù)分步乘法計(jì)數(shù)原理得2×5=10.,2.如圖,要給地圖A,B,C,D四個(gè)區(qū)域分別涂上3種不同顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同的顏色,不同的涂色方案有多少種?,【解析】按地圖A,B,C,D四個(gè)區(qū)域依次分四步完成,第一步,m1=3種,第二步,m2=2種,第三步,m3=1種,第四步,m4=1種,所以根據(jù)分步乘法計(jì)數(shù)原理,得到不同的涂色方案共有N=3×2×1×1=6(種).,考點(diǎn)3 兩個(gè)計(jì)數(shù)原理的綜合應(yīng)用 知·考情 利用兩個(gè)計(jì)數(shù)原理,求解有關(guān)實(shí)際問(wèn)題,是高考考查兩個(gè)計(jì)數(shù)原理的一個(gè)重要考向,常與涂色問(wèn)題、組數(shù)問(wèn)題、排隊(duì)問(wèn)題、種植問(wèn)題等交匯考查,一般以選擇題、填空題的形式出現(xiàn).,明·角度 命題角度1:涂色問(wèn)題 【典例3】(2015·汕頭模擬)如圖,用6種不同的顏色把 圖中A,B,C,D四塊區(qū)域分開(kāi),若相鄰區(qū)域不能涂同一種 顏色,則不同的涂法共有( ) A.400種 B.460種 C.480種 D.496種,【解題提示】可按使用顏色的種數(shù)分類(lèi)來(lái)完成此事. 【規(guī)范解答】選C.完成此事可能使用4種顏色,也可能使用3種顏色.當(dāng)使用4種顏色時(shí):從A開(kāi)始,有6種方法,B有5種,C有4種,D有3種,完成此事共有6×5×4×3=360(種)方法;當(dāng)使用3種顏色時(shí):A,D使用同一種顏色,從A,D開(kāi)始,有6種方法,B有5種,C有4種,完成此事共有6×5×4 =120(種)方法.由加法計(jì)數(shù)原理可知:不同涂法有360+120= 480(種).,命題角度2:重復(fù)元素的計(jì)數(shù)問(wèn)題 【典例4】(2014·福建高考)用a代表紅球,b代表藍(lán)球,c代表黑球,由加法原理及乘法原理,從1個(gè)紅球和1個(gè)藍(lán)球中取出若干個(gè)球的所有取法可由(1+a)(1+b)的展開(kāi)式1+a+b+ab表示出來(lái),如:“1”表示一個(gè)球都不取、“a”表示取出一個(gè)紅球,而“ab”則表示把紅球和藍(lán)球都取出來(lái).依此類(lèi)推,下列各式中,其展開(kāi)式可用來(lái)表示從5個(gè)無(wú)區(qū)別的紅球、5個(gè)無(wú)區(qū)別的藍(lán)球、5個(gè)有區(qū)別的黑球中取出若干個(gè)球,且所有的藍(lán)球都取出或都不取出的所有取法的是( ),A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5 B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5 C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5) D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5) 【解題提示】對(duì)于信息題,要善于運(yùn)用邏輯思維去推導(dǎo),同時(shí)明確材料給我們傳達(dá)的信息.,【規(guī)范解答】選A.因?yàn)闊o(wú)區(qū)別,所以取紅球的方法數(shù)為1+a+a2+a3+a4 +a5;因?yàn)樗{(lán)球要都取出,或都不取出,所以方法為1+b5,因?yàn)楹谇蛴袇^(qū)別,因此,取黑球的方法數(shù)為(1+c)5,所以所有取法數(shù)為(1+a+a2+a3+ a4+a5)(1+b5)(1+c)5.,悟·技法 利用兩個(gè)計(jì)數(shù)原理解決應(yīng)用問(wèn)題的一般思路 (1)弄清完成一件事是做什么. (2)確定是先分類(lèi)后分步,還是先分步后分類(lèi). (3)弄清分步、分類(lèi)的標(biāo)準(zhǔn)是什么. (4)利用兩個(gè)計(jì)數(shù)原理求解.,通·一類(lèi) 1.(2015·銀川模擬)集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3, …,9},且P?Q.把滿(mǎn)足上述條件的一個(gè)有序整數(shù)對(duì)(x,y)作為一個(gè)點(diǎn)的坐標(biāo),則這樣的點(diǎn)的個(gè)數(shù)是( ) A.9 B.14 C.15 D.21 【解析】選B.當(dāng)x=2時(shí),x≠y,點(diǎn)的個(gè)數(shù)為1×7=7(個(gè));當(dāng)x≠2時(shí),x=y,點(diǎn)的個(gè)數(shù)為7×1=7(個(gè)),則共有14個(gè)點(diǎn).,2.(2015·張掖模擬)用6種不同顏色為如圖所示的廣 告牌著色,要求有公共邊界的區(qū)域不能用同一種顏色, 則共有 種不同的方法著色. 【解析】由分步乘法計(jì)數(shù)原理知:第一步,涂①區(qū)有6種方法;第二步,涂②區(qū)有5種方法;第三步,涂③區(qū)有4種方法;第四步,涂④區(qū)有4種方法.由分步乘法計(jì)數(shù)原理知,共有6×5×4×4=480種方法. 答案:480,3.(2015·鄭州模擬)用數(shù)字2,3組成四位數(shù),且數(shù)字2,3至少都出現(xiàn)一次,這樣的四位數(shù)共有 個(gè).(用數(shù)字作答) 【解析】數(shù)字2,3至少都出現(xiàn)一次,包括以下情況: “2”出現(xiàn)1次,共有4種方法,“3”出現(xiàn)3次,共有1種方法,共可組成4×1=4(個(gè))四位數(shù).,“2”出現(xiàn)2次,共有 =6種方法,“3”出現(xiàn)2次,共有1種方法,共可組成6×1=6(個(gè))四位數(shù). “2”出現(xiàn)3次,共有 =4種方法,“3”出現(xiàn)1次,共有1種方法,共可組成4×1=4(個(gè))四位數(shù). 綜上所述,共可組成4+6+4=14個(gè)四位數(shù). 答案:14,巧思妙解10 巧用間接法求解計(jì)數(shù)問(wèn)題 【典例】(2014·安徽高考)從正方體六個(gè)面的對(duì)角線(xiàn)中任取兩條作 為一對(duì),其中所成的角為60°的共有( ) A.24對(duì) B.30對(duì) C.48對(duì) D.60對(duì) 【常規(guī)解法】選C.與正方體的一個(gè)面上的一條對(duì)角線(xiàn)成60°角的對(duì) 角線(xiàn)有8條,故共有8對(duì),正方體的12條面對(duì)角線(xiàn)共有96對(duì),且每對(duì)均 重復(fù)計(jì)算一次,故共有 =48對(duì).,【巧妙解法】選C.正方體的面對(duì)角線(xiàn)共有12條,兩條為一對(duì), 共有12×11÷2=66對(duì). 同一面上的對(duì)角線(xiàn)不滿(mǎn)足題意,對(duì)面的面對(duì)角線(xiàn)也不 滿(mǎn)足題意,一組平行平面共有6對(duì)不滿(mǎn)足題意的對(duì)角 線(xiàn)對(duì)數(shù),不滿(mǎn)足題意的共有:3×6=18.從正方體六個(gè) 面的對(duì)角線(xiàn)中任取兩條作為一對(duì),其中所成的角為60°的共有: 66-18=48.,,【方法指導(dǎo)】 1.間接法的解題思路 (1)將問(wèn)題所包含的所有情景一一列舉出來(lái)并得出其數(shù)值. (2)找出不合題設(shè)要求的情況. (3)刪除不合題意的部分,得出結(jié)論.,2.間接法的應(yīng)用條件 “間接法”求解計(jì)數(shù)問(wèn)題其應(yīng)用條件是該問(wèn)題包含兩種或兩種以上的情況,而要求計(jì)數(shù)的情況較復(fù)雜不易得出結(jié)論,而問(wèn)題的反面(對(duì)立面)計(jì)數(shù)比較容易,此時(shí)可采用間接法求解.,【類(lèi)題試解】高三年級(jí)的三個(gè)班去甲、乙、丙、丁四個(gè)工廠(chǎng)參加社會(huì) 實(shí)踐,但去何工廠(chǎng)可自由選擇,甲工廠(chǎng)必須有班級(jí)要去,則不同的分配 方案有( ) A.16種 B.18種 C.37種 D.48種 【常規(guī)解法】選C.有一個(gè)班去甲工廠(chǎng),其余兩個(gè)班去其他工廠(chǎng), 共有 ·32=27種方法;有兩個(gè)班去甲工廠(chǎng),另一個(gè)班去其他工廠(chǎng),共有 3×3=9種方法;若三個(gè)班都去甲工廠(chǎng),共有1種方法.由分類(lèi)加法計(jì)數(shù) 原理知,共有27+9+1=37種方法.,【巧妙解法】選C.三個(gè)班去四個(gè)工廠(chǎng)不同的分配方案共43種,甲工廠(chǎng)沒(méi)有班級(jí)去的分配方案共33種,因此滿(mǎn)足條件的不同的分配方案共有43-33=37(種).,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
14.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué) 10.1 分類(lèi)加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理課件 高考 數(shù)學(xué) 分類(lèi) 加法 計(jì)數(shù) 原理 分步 乘法 課件
鏈接地址:http://m.jqnhouse.com/p-2180238.html