2019-2020年高中數學 第一章《函數的奇偶性》教案 新人教A版必修1.doc
《2019-2020年高中數學 第一章《函數的奇偶性》教案 新人教A版必修1.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數學 第一章《函數的奇偶性》教案 新人教A版必修1.doc(3頁珍藏版)》請在裝配圖網上搜索。
2019-2020年高中數學 第一章《函數的奇偶性》教案 新人教A版必修1 教學目的:(1)理解函數的奇偶性及其幾何意義; (2)學會運用函數圖象理解和研究函數的性質; (3)學會判斷函數的奇偶性. 教學重點:函數的奇偶性及其幾何意義. 教學難點:判斷函數的奇偶性的方法與格式. 教學過程: 一、 引入課題 1.實踐操作:(也可借助計算機演示) 取一張紙,在其上畫出平面直角坐標系,并在第一象限任畫一可作為函數圖象的圖形,然后按如下操作并回答相應問題: 以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內圖形的痕跡,然后將紙展開,觀察坐標系中的圖形; 問題:將第一象限和第二象限的圖形看成一個整體,則這個圖形可否作為某個函數y=f(x)的圖象,若能請說出該圖象具有什么特殊的性質?函數圖象上相應的點的坐標有什么特殊的關系? 答案:(1)可以作為某個函數y=f(x)的圖象,并且它的圖象關于y軸對稱; (2)若點(x,f(x))在函數圖象上,則相應的點(-x,f(x))也在函數圖象上,即函數圖象上橫坐標互為相反數的點,它們的縱坐標一定相等. 以y軸為折痕將紙對折,然后以x軸為折痕將紙對折,在紙的背面(即第三象限)畫出第一象限內圖形的痕跡,然后將紙展開,觀察坐標系中的圖形: 問題:將第一象限和第三象限的圖形看成一個整體,則這個圖形可否作為某個函數y=f(x)的圖象,若能請說出該圖象具有什么特殊的性質?函數圖象上相應的點的坐標有什么特殊的關系? 答案:(1)可以作為某個函數y=f(x)的圖象,并且它的圖象關于原點對稱; (2)若點(x,f(x))在函數圖象上,則相應的點(-x,-f(x))也在函數圖象上,即函數圖象上橫坐標互為相反數的點,它們的縱坐標也一定互為相反數. 2.觀察思考(教材P39、P40觀察思考) 二、 新課教學 (一)函數的奇偶性定義 象上面實踐操作中的圖象關于y軸對稱的函數即是偶函數,操作中的圖象關于原點對稱的函數即是奇函數. 1.偶函數(even function) 一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數. (學生活動):仿照偶函數的定義給出奇函數的定義 2.奇函數(odd function) 一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做奇函數. 注意: 函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質; 由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱). (二)具有奇偶性的函數的圖象的特征 偶函數的圖象關于y軸對稱; 奇函數的圖象關于原點對稱. (三)典型例題 1.判斷函數的奇偶性 例1.(教材P36例3)應用函數奇偶性定義說明兩個觀察思考中的四個函數的奇偶性.(本例由學生討論,師生共同總結具體方法步驟) 解:(略) 總結:利用定義判斷函數奇偶性的格式步驟: 首先確定函數的定義域,并判斷其定義域是否關于原點對稱; 確定f(-x)與f(x)的關系; 作出相應結論: 若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數; 若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數. 鞏固練習:(教材P41例5) 例2.(教材P46習題1.3 B組每1題) 解:(略) 說明:函數具有奇偶性的一個必要條件是,定義域關于原點對稱,所以判斷函數的奇偶性應應首先判斷函數的定義域是否關于原點對稱,若不是即可斷定函數是非奇非偶函數. 2.利用函數的奇偶性補全函數的圖象 (教材P41思考題) 規(guī)律: 偶函數的圖象關于y軸對稱; 奇函數的圖象關于原點對稱. 說明:這也可以作為判斷函數奇偶性的依據. 鞏固練習:(教材P42練習1) 3.函數的奇偶性與單調性的關系 (學生活動)舉幾個簡單的奇函數和偶函數的例子,并畫出其圖象,根據圖象判斷奇函數和偶函數的單調性具有什么特殊的特征. 例3.已知f(x)是奇函數,在(0,+∞)上是增函數,證明:f(x)在(-∞,0)上也是增函數 解:(由一名學生板演,然后師生共同評析,規(guī)范格式與步驟) 規(guī)律: 偶函數在關于原點對稱的區(qū)間上單調性相反; 奇函數在關于原點對稱的區(qū)間上單調性一致. 三、 歸納小結,強化思想 本節(jié)主要學習了函數的奇偶性,判斷函數的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數的奇偶性時,必須注意首先判斷函數的定義域是否關于原點對稱.單調性與奇偶性的綜合應用是本節(jié)的一個難點,需要學生結合函數的圖象充分理解好單調性和奇偶性這兩個性質. 四、 作業(yè)布置 1. 書面作業(yè):課本P46 習題1.3(A組) 第9、10題, B組第2題. 2.補充作業(yè):判斷下列函數的奇偶性: ; ; () 3. 課后思考: 已知是定義在R上的函數, 設, 試判斷的奇偶性; 試判斷的關系; 由此你能猜想得出什么樣的結論,并說明理由.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 函數的奇偶性 2019-2020年高中數學 第一章函數的奇偶性教案 新人教A版必修1 2019 2020 年高 數學 第一章 函數 奇偶性 教案 新人 必修
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.jqnhouse.com/p-2567628.html