差動(dòng)變速器、差速器的設(shè)計(jì)【含6張CAD圖紙、說明書】,含6張CAD圖紙、說明書,差動(dòng),變速器,差速器,設(shè)計(jì),CAD,圖紙,說明書
畢業(yè)設(shè)計(jì)(論文)
題目: 差動(dòng)變速器的設(shè)計(jì)
信機(jī) 系 機(jī)械工程及自動(dòng)化 專業(yè)
學(xué) 號(hào)
學(xué)生姓名
指導(dǎo)教師
誠(chéng) 信 承 諾 書
本人鄭重聲明:所呈交的畢業(yè)設(shè)計(jì)(論文) 差動(dòng)變速器的設(shè)計(jì) 是本人在導(dǎo)師的指導(dǎo)下獨(dú)立進(jìn)行研究所取得的成果,其內(nèi)容除了在畢業(yè)設(shè)計(jì)(論文)中特別加以標(biāo)注引用,表示致謝的內(nèi)容外,本畢業(yè)設(shè)計(jì)(論文)不包含任何其他個(gè)人、集體已發(fā)表或撰寫的成果作品。
班 級(jí):
學(xué) 號(hào):
作者姓名:
信 機(jī) 系 機(jī)械工程及自動(dòng)化 專業(yè)
畢 業(yè) 設(shè) 計(jì)論 文 任 務(wù) 書
一、題目及專題:
1、題目 差動(dòng)變速器的設(shè)計(jì)
2、專題
二、課題來源及選題依據(jù)
差動(dòng)變速器是由基本型變速器對(duì)差動(dòng)輪系進(jìn)行封閉而成的一種組合式變速傳動(dòng)裝置.基本型變速器一般分為磨擦式、鏈?zhǔn)?、帶式和脈動(dòng)式.通過選取
裝置內(nèi)各不同傳動(dòng)參數(shù),可實(shí)現(xiàn)精密調(diào)速并擴(kuò)大基本型變速器承載能力,或者擴(kuò)大基本型變速器的調(diào)速范圍,甚至實(shí)現(xiàn)過零調(diào)速.將基本型變速器和差動(dòng)輪系組合,有利于提高變速器變速范圍,因此差動(dòng)變速器具有很好的開發(fā)空間和市場(chǎng)前景。
針對(duì)差動(dòng)變速器的分析和設(shè)計(jì)較為復(fù)雜的問題,提出了一種對(duì)差動(dòng)變速器進(jìn)行差動(dòng)輪系的配齒計(jì)算方法,以及與變速器的組合裝配設(shè)計(jì)的方法,給出了差動(dòng)變速器的詳細(xì)設(shè)計(jì)過程,并根據(jù)參數(shù)畫出其裝配圖,為同類型傳動(dòng)設(shè)計(jì)提供了理論基礎(chǔ)和方法。
三、本設(shè)計(jì)(論文或其他)應(yīng)達(dá)到的要求:
① 了解變速器的發(fā)展歷程及其工作特點(diǎn);
② 熟練使用CAD,UG等制圖軟件;
II
③ 熟練掌握差動(dòng)變速器的變速原理;
④ 辨別差動(dòng)變速器與其他變速器的共同點(diǎn)與不同點(diǎn);
⑤ 能夠具備一定的三維空間想象能力。
四、接受任務(wù)學(xué)生:
五、開始及完成日期:
自2012年11月12日 至2013年5月25日
六、設(shè)計(jì)(論文)指導(dǎo)(或顧問):
指導(dǎo)教師 簽名
簽名
簽名
教研室主任
〔學(xué)科組組長(zhǎng)研究所所長(zhǎng)〕 簽名
系主任 簽名
Gear reducer based on U G 3 d entity model and movement simulation
Abstract: this paper introduces the final version with UG software UG NX MOSLING module gear reducer for the three-dimensional entity model, the main parts including shaft, gear, gear, shaft, the lower housing, on housing and assembly. Finally in the MOTION module of UG assembly model for the MOTION simulation.
Key words: UG; Three dimensional entity modeling; Gear reducer; The simulation
Chinese classification number: TH16 literature identifier: A
UG is a three-dimensional entity model in the integration of CAD/CAM/CAE technology and is widely used in computer aided design, analysis, manufacturing software. In this article, there are a few problems that should be paid attention to is: the involute gear tooth profile model, when operating hollow-out style cover, gear position between the shaft and gear assembly.
1 drawing involute tooth profile of the gear
On the other hand gear involute tooth profile gear in UG (3) the \"expression\" in the drawing, the involute gear teeth with vc + + 6.0 configuration file articles saved coordinate scheme and the corresponding data file tooth profile face value, and define spline drawing involute tooth profile gear use \"dot\" read from the file.
Involute polar parameter equation is
Will rk and the expansion of the substitution and the expression of trigonometric functions, can be obtained:
Here is in the K point of involute tooth profile radius, Angle is involute in AK, is radius of base circle, is at the K point of pressure Angle.
Figure 1, figure 2
With vc + + 6.0 program to change from 0 to 180 K (K +), you can get corresponding Xk and Yk, and save the corresponding data file JKX. Dat, as shown in figure 1.
In UG with insert - > curve - > simulation in the main menu, click the \"by\" button will pop up dialog box, and then the system displays as shown in figure 2 are connected by a spline. Click the \"take from the file\" button and select the aforementioned data file JKX. Dat, can get the corresponding involute as shown in figure 3.
Figure 3
Due to tooth thickness and reference circle tooth space width is equal to the gear tooth and tooth space is quite relative central Angle, then the opposite half tooth thickness is central Angle, that is, z represents the number of teeth, should be XC shaft rotation and through the expression of calculate, Angle is due to the reference standard gear pressure Angle for, should be XC shaft rotation. On the XC shaft drawing a straight line, and then select the line as the centerline of the mirror, \"cable\" on line \"mirror\" to mirror involute, the tooth profile surface and the radius of addendum Angle is, m as the modulus, is the nominal pressure Angle, is the coefficient of tooth bottom. Finally, you can get the gear as shown in figure 4, the three-dimensional entity model. .
Figure 4
Similarly, you can get the gear involute gear shaft contour.
2 when the cover is modeling some problems deserve attention
Hollow cap to cover the entire model, completed the receive part of the entity, can't fully perfect entity. In this article, we use \"hollowing out\" in the \"area\" and the coverage can be divided into two parts: the bearing seat, and raised levels and boarding and can join together is a part of them; The rest is another part, and the hollow. The key point is to join before hollowing out, and must be after the hollowing out. We believe that the complex system should be broken down into simple, and hollowed out respectively, and then join.
3 the position of the gear shaft and gear assembly
Between gears and gear shaft axial position when in the assembly is to determine, so the interference may occur between the teeth. In UG, there are eight types of restrictions, such as: gear, alignment, Angle, parallel, perpendicular, center, distance and tangent, but they are not sure the two gear meshing relationship. Therefore, it is necessary when the entity model of gear shaft and gear design drawing the relative position. We paint in the assembly process of the gear shaft centerline with the centerline of the gear space and two lines should be kept parallel to each other, can avoid the interference between the tooth and. We have installed parallel to the edge line of above two lines respectively, with parallel restriction relationship, so, two parallel lines may be more. Therefore, tooth interference will not occur in the process of eating.
We have completed the reducer is a major component of three-dimensional entity model. Then, let's do it in the motion simulation. First of all, in the case of establishing motion analysis, gear shaft and bearing inner ring as the first connection; Shaft, the gear, had been fixed distance ring and inner ring bearings as the second link. Then, established the joint movement of the unit. That is established between the gear shaft and gear rotary separately. Finally, set the composite gear rotary movement one and two. Select kinematic/dynamic analysis on the picture, and insert the time and steps, we can get the gear reducer movement simulation.
基于 U G 的減速器三維實(shí)體模型和運(yùn)動(dòng)仿真
摘要:本文介紹了用UG軟件的最終版UG NX的MOSLING模塊對(duì)減速器進(jìn)行了三維實(shí)體造型,主要零件包括軸、齒輪、齒、輪軸、下箱體、上箱體及相應(yīng)的裝配。最后在UG的MOTION模塊中對(duì)裝配模型進(jìn)行了運(yùn)動(dòng)仿真。
關(guān)鍵詞:UG;三維實(shí)體造型;減速器;仿真
中文分類號(hào):TH16 文獻(xiàn)標(biāo)識(shí)碼:A
UG是三維實(shí)體模型于一體的CAD / CAM/ CAE技術(shù)及廣泛應(yīng)用于全球的計(jì)算機(jī)輔助設(shè)計(jì)、分析、制造軟件。在這篇文章中有幾個(gè)問題應(yīng)注意的是:漸開線齒齒輪輪廓模型、當(dāng)操作時(shí)鏤空造型的封面、齒輪軸和齒輪之間的裝配時(shí)的位置。
1 繪制漸開線齒廓齒輪齒
另一方面齒輪漸開線齒廓齒可在UG〔3〕里的“表達(dá)”繪制,這個(gè)漸開線齒輪齒牙用VC++ 6.0配置文件的文章保存協(xié)調(diào)方案和相應(yīng)的數(shù)據(jù)文件中齒廓面價(jià)值,并用定義樣條繪制漸開線齒廓齒輪使用“從文件中讀點(diǎn)”。
漸開線極坐標(biāo)參數(shù)方程是
將和代入和三角函數(shù)表達(dá)式的擴(kuò)展,可得到:
這里的是在K點(diǎn)處的漸開線齒形半徑,是漸開線在AK段得角度,是基圓半徑,是在K點(diǎn)處的壓力角。
圖1 圖2
用VC++ 6.0程序來改變從0到180改變(K+K),可以得到相應(yīng)的Xk和Yk,并保存相應(yīng)的數(shù)據(jù)文件jkx . dat,如圖1所示。
在UG的主菜單中有插入→曲線→仿真,單擊“通過點(diǎn)”按鈕會(huì)彈出對(duì)話框,然后系統(tǒng)顯示如圖2通過點(diǎn)樣條。單擊“從文件中取點(diǎn)”按鈕并且選擇前面提到的數(shù)據(jù)文件jkx . dat,可以得到如圖3中相應(yīng)的漸開線。
圖3
由于齒厚和參考圓齒空間寬度是相等的,齒輪的齒與齒的空間相對(duì)圓心角是相當(dāng)?shù)模敲聪喾吹陌臊X厚中心角是,即,z代表齒數(shù),XC軸應(yīng)旋轉(zhuǎn)并且通過的表達(dá)式算出,角是由于參考標(biāo)準(zhǔn)齒輪壓力角為,XC軸應(yīng)該旋轉(zhuǎn)。在XC軸上繪制一條直線,然后選擇這條線作為鏡像的中線,用“已有線”在“鏡像線”來鏡像漸開線,在齒廓面和齒頂?shù)陌霃浇鞘牵琺為模數(shù),是公稱壓力角,是齒底系數(shù)。最后,可以的得到如圖4齒輪的三維實(shí)體模型。.
圖 4
同理,可以得到齒輪漸開線齒輪軸輪廓。
2 當(dāng)覆蓋建模是有些問題應(yīng)該得到重視
空心蓋在完成了覆蓋整個(gè)模型,可以得到部分實(shí)體,不能得到充分完美的實(shí)體。此文中,我們利用“空心化”里的“區(qū)域”和將覆蓋分為兩部分:軸承座,突起的水平和寄宿而且可以聯(lián)接在一起的是其中的一部份;其余的是另外一部分,和空心分離的。這關(guān)鍵點(diǎn)就是在空洞化之前聯(lián)接,并且必須在空洞化之后。我們認(rèn)為,復(fù)雜的機(jī)構(gòu)應(yīng)當(dāng)分解為簡(jiǎn)單的機(jī)構(gòu),并分別挖空,然后再聯(lián)接。
3 齒輪軸和齒輪裝配時(shí)的位置
齒輪和齒輪軸之間的軸向位置當(dāng)在組裝是去確定的,所以干擾可能發(fā)生在齒間。在UG中,有八種類型的限制,例如:嚙合、對(duì)齊、角度、平行、垂直、中心、距離和正切,但他們都不確定兩個(gè)齒輪的嚙合關(guān)系。因此,有必要在齒輪軸和齒輪的實(shí)體模型設(shè)計(jì)時(shí)繪制相對(duì)位置。在裝配過程中我們繪制齒輪齒軸中心線與中心線空間齒輪齒和兩行應(yīng)保持相互平行,所以干擾可避免與齒間。我們一直與邊緣線以上兩行分別平行安裝,帶平行制約的關(guān)系,所以,兩直線可能更平行。因此,輪齒在吃過程中不會(huì)發(fā)生干擾。
我們完成了減速器三維實(shí)體模型的主要組成部分。然后,我們來做它的運(yùn)動(dòng)仿真。首先,在建立運(yùn)動(dòng)分析的情況下,齒輪軸和軸承內(nèi)圈的作為第一個(gè)聯(lián)接;軸、齒輪、已固定距離的環(huán)和相應(yīng)的內(nèi)圈軸承作為第二聯(lián)接。接著,成立了聯(lián)合運(yùn)動(dòng)的單位。即成立了齒輪軸和齒輪之間的分開回轉(zhuǎn)。最后,設(shè)置復(fù)合齒輪的回轉(zhuǎn)一和二運(yùn)動(dòng)。選擇運(yùn)動(dòng)學(xué)/動(dòng)力學(xué)分析圖畫,并且插入時(shí)間和步驟,我們可以得到減速器的運(yùn)動(dòng)仿真。
編號(hào)
畢業(yè)設(shè)計(jì)(論文)
相關(guān)資料
題目: 差動(dòng)變速器的設(shè)計(jì)
信機(jī) 系 機(jī)械工程及自動(dòng)化 專業(yè)
學(xué) 號(hào):
學(xué)生姓名:
指導(dǎo)教師:
目 錄
一、畢業(yè)設(shè)計(jì)(論文)開題報(bào)告
二、畢業(yè)設(shè)計(jì)(論文)外文資料翻譯及原文
三、學(xué)生“畢業(yè)論文(論文)計(jì)劃、進(jìn)度、檢查及落實(shí)表”
四、實(shí)習(xí)鑒定表
畢業(yè)設(shè)計(jì)(論文)
開題報(bào)告
題目: 差動(dòng)變速器的設(shè)計(jì)
信機(jī) 系 機(jī)械工程及自動(dòng)化 專業(yè)
學(xué) 號(hào):
學(xué)生姓名:
指導(dǎo)教師:
課題來源
來自于工廠
科學(xué)依據(jù)
(1)課題科學(xué)意義
差動(dòng)變數(shù)器是行星齒輪的特殊情況。差動(dòng)輪系還可以將一個(gè)原動(dòng)構(gòu)件的轉(zhuǎn)動(dòng)分解為另外兩個(gè)從動(dòng)基本構(gòu)件的不同轉(zhuǎn)動(dòng)。差動(dòng)輪系可進(jìn)行運(yùn)動(dòng)合成的這種特性被廣泛應(yīng)用于機(jī)床、計(jì)算機(jī)構(gòu)及補(bǔ)償調(diào)整裝置中。
(2)差動(dòng)變速器研究狀況及其發(fā)展前景
行星齒輪傳動(dòng)的主要特點(diǎn)是體積小,承載能力大,工作平穩(wěn)。但大功率高速行星齒輪傳動(dòng)結(jié)構(gòu)較復(fù)雜,要求制造精度高。行星齒輪傳動(dòng)中有些類型效率高,但傳動(dòng)比不大。另一些類型則傳動(dòng)比可以很大,但效率較低。用它們作減速器時(shí),其效率隨傳動(dòng)比的增大而減?。蛔髟鏊倨鲿r(shí)則有可能產(chǎn)生自鎖。輪系在各種機(jī)械中得到了廣泛的應(yīng)用。
1.實(shí)現(xiàn)大傳動(dòng)比的減速傳動(dòng)
右圖所示的行星齒輪系中,若各輪的齒數(shù)分別為z1=100,z2=101,z2’=100,z3=99,則輸入構(gòu)件H對(duì)輸出構(gòu)件1的傳動(dòng)比 =10000??梢姡鶕?jù)需要行星齒輪系可獲得很大的傳動(dòng)比。
2. 實(shí)現(xiàn)結(jié)構(gòu)緊湊的大功率傳動(dòng)
行星齒輪系可以采用幾個(gè)均勻分布的行星輪同時(shí)傳遞運(yùn)動(dòng)和動(dòng)力(見左圖)。這些行星輪因公轉(zhuǎn)而產(chǎn)生的離心慣性力和齒廓間反作用力的徑向分力可互相平衡,故主軸受力小,傳遞功率大。另外由于它采用內(nèi)嚙合齒輪,充分利用了傳動(dòng)的空間,且輸入輸出軸在一條直線上,所以整個(gè)輪系的空間尺寸要比相同條件下的普通定軸齒輪系小得多。這種輪系特別適合于飛行器。
3.實(shí)現(xiàn)運(yùn)動(dòng)的合成
運(yùn)動(dòng)的合成是將兩個(gè)輸入運(yùn)動(dòng)合為一個(gè)輸出運(yùn)動(dòng)。差動(dòng)輪系的自由度等于2,當(dāng)給定任意兩個(gè)構(gòu)件的確定運(yùn)動(dòng)后,另一構(gòu)件的運(yùn)動(dòng)才能確定。利用差動(dòng)輪系的這一特點(diǎn)可以實(shí)現(xiàn)運(yùn)動(dòng)的合成。
行星架H的轉(zhuǎn)速是輪1與輪3轉(zhuǎn)速的合成。因此這種輪系可用作加法機(jī)構(gòu)。當(dāng)行星架H、太陽輪1或3為原動(dòng)件時(shí),該輪系又可用作減法機(jī)構(gòu)。
差動(dòng)輪系可進(jìn)行運(yùn)動(dòng)合成的這種特性被廣泛應(yīng)用于機(jī)床、計(jì)算機(jī)構(gòu)及補(bǔ)償調(diào)整裝置中。
研究?jī)?nèi)容
①了解差速器的定義,原理,特點(diǎn)及應(yīng)用;
②齒輪傳動(dòng)的參數(shù)設(shè)計(jì)計(jì)算;
③驗(yàn)算和效率的計(jì)算;
④行星齒輪的強(qiáng)度校核;
⑤軸承載荷和壽命的校核;
⑥畫裝配圖,零件圖。
擬采取的研究方法、技術(shù)路線、實(shí)驗(yàn)方案及可行性分析
(1)實(shí)驗(yàn)方案
①多去圖書館找些關(guān)于變速器方面的專業(yè)書籍,認(rèn)真揣摩變速器的內(nèi)部結(jié)構(gòu)。
②在變速器的理論基礎(chǔ)上,找出如何設(shè)計(jì)差動(dòng)變速器的突破口。
(2)研究方法
① 在行星輪減速器的基礎(chǔ)上增加一個(gè)輸入,使其能夠?qū)嵭胁顒?dòng)變速。
② 深入研究差速器的內(nèi)部結(jié)構(gòu)。
研究計(jì)劃及預(yù)期成果
研究計(jì)劃:
2012年10月12日-2012年12月25日:按照任務(wù)書要求查閱論文相關(guān)參考資料,填寫畢業(yè)設(shè)計(jì)開題報(bào)告書。
2013年1月11日-2013年3月5日:填寫畢業(yè)實(shí)習(xí)報(bào)告。
2013年3月8日-2013年3月14日:按照要求修改畢業(yè)設(shè)計(jì)開題報(bào)告。
2013年3月15日-2013年3月21日:學(xué)習(xí)并翻譯一篇與畢業(yè)設(shè)計(jì)相關(guān)的英文材料。
2013年3月22日-2013年4月11日:計(jì)算并校核。
2013年4月12日-2013年4月25日:畫裝配圖。
2013年4月26日-2013年5月21日:畢業(yè)論文撰寫和修改工作。
預(yù)期成果:
完成要求的變速傳動(dòng)比,畫出差速器的裝配圖,零件圖 ,完成畢業(yè)設(shè)計(jì)。
特色或創(chuàng)新之處
① 將差動(dòng)變速器的優(yōu)良特點(diǎn)運(yùn)用到此設(shè)備上。
② 采用從設(shè)計(jì)思路,再計(jì)算,最后到成形的設(shè)計(jì),思路清晰,簡(jiǎn)潔明了,行之有效。
已具備的條件和尚需解決的問題
① 書本上的理論知識(shí),cad軟件的掌握。
② 設(shè)計(jì)更優(yōu)的結(jié)構(gòu)滿足設(shè)計(jì)要求。
指導(dǎo)教師意見
指導(dǎo)教師簽名:
年 月 日
教研室(學(xué)科組、研究所)意見
教研室主任簽名:
年 月 日
系意見
主管領(lǐng)導(dǎo)簽名:
年 月 日
Abstract
摘 要
差動(dòng)變速器是由基本型變速器對(duì)差動(dòng)輪系進(jìn)行封閉而成的一種組合式變速傳動(dòng)裝置.基本型變速器一般分為磨擦式、鏈?zhǔn)健胶兔}動(dòng)式.通過選取裝置內(nèi)各不同傳動(dòng)參數(shù),可實(shí)現(xiàn)精密調(diào)速并擴(kuò)大基本型變速器承載能力,或者擴(kuò)大基本型變速器的調(diào)速范圍,甚至實(shí)現(xiàn)過零調(diào)速.將基本型變速器和差動(dòng)輪系組合,有利于提高變速器變速范圍,因此差動(dòng)變速器具有很好的開發(fā)空間和市場(chǎng)前景。
針對(duì)差動(dòng)變速器的分析和設(shè)計(jì)較為復(fù)雜的問題,提出了一種對(duì)差動(dòng)變速器進(jìn)行差動(dòng)輪系的配齒計(jì)算方法,以及與變速器的組合裝配設(shè)計(jì)的方法,給出了差動(dòng)變速器的詳細(xì)設(shè)計(jì)過程,并根據(jù)參數(shù)畫出其裝配圖,為同類型傳動(dòng)設(shè)計(jì)提供了理論基礎(chǔ)和方法。
通過分析差動(dòng)無級(jí)變速器中帶式無級(jí)變速工作原理,對(duì)差動(dòng)無級(jí)變速器中的帶輪傳動(dòng)和差動(dòng)輪系及定軸齒輪副進(jìn)行計(jì)算設(shè)計(jì),得到了帶輪急齒輪傳動(dòng)的重要參數(shù),最后對(duì)其組合裝配設(shè)計(jì),實(shí)現(xiàn)了提高無級(jí)變速器的變速范圍。
關(guān)鍵詞:差動(dòng)變速器;傳動(dòng)裝置;配齒計(jì)算;組合設(shè)計(jì)
Abstract
Differential transmission is composed of basic transmission to closed differential gear train a combination of variable speed drive. Generally divided into basic transmission friction type, chain and belt type and pulsating flow. By selecting device inside the different parameters, which can realize precise control of motor speed and expand the basic transmission capacity, and expand the basic transmission speed range, and even realize zero speed. The basic transmission and the differential gear train, to improve the transmission speed range, as a result, the differential transmission has the very good development space and market prospects.
According to the analysis of the differential transmission and design of more complex problems, put forward a kind of differential gear train was carried out on the differential transmission of gear calculation method, and combined with the transmission assembly design method, gives the detailed design process of a differential transmission, and draw the assembly drawing, according to the parameters of the same type transmission design provides a theoretical basis and methods.
By analyzing the differential stepless transmission belt type CVT working principle, the differential stepless transmission pulley transmission and the differential gear train and in the calculation and design of fixed axis gear pair, the pulley gear transmission of the important parameters, finally the combination assembly design, realized the stepless transmission speed range.
Key words: differential transmission; Transmission device; For computing tooth; Composite design
I
目 錄
摘要 III
ABSTRACT IV
目 錄 V
1 緒論 1
1.1 設(shè)計(jì)目的和意義 1
1.2 設(shè)計(jì)任務(wù) 1
2 總體方案設(shè)計(jì) 1
2.1 主要組成結(jié)構(gòu) 2
2.2 主要技術(shù)參數(shù) 2
2.3 工作原理與工作過程概述 3
2.3.1 環(huán)模制粒機(jī)的工作原理 3
2.3.2 環(huán)模制粒機(jī)的主要工作過程 4
3 喂料機(jī)構(gòu)設(shè)計(jì) 4
3.1 喂料輸送結(jié)構(gòu)設(shè)計(jì) 5
3.2 喂料器參數(shù)計(jì)算 5
3.2.1 螺旋直徑D與螺旋軸轉(zhuǎn)速n的計(jì)算 5
3.2.2 物料軸向推進(jìn)速度計(jì)算 6
3.2.3 電機(jī)的選擇 6
3.3 機(jī)槽的設(shè)計(jì) 6
4 調(diào)制器結(jié)構(gòu)設(shè)計(jì) 7
4.1 調(diào)質(zhì)的作用 7
4.2 調(diào)質(zhì)過程的控制 7
4.3 調(diào)制器總體方案設(shè)計(jì)及計(jì)算 7
5 主傳動(dòng)系統(tǒng)的設(shè)計(jì) 9
5.1 主電機(jī)的選擇 9
5.2 主傳動(dòng)計(jì)算 9
5.2.1 選定齒輪類型、精度等級(jí)、材料及齒數(shù) 9
5.2.2 按齒面接觸強(qiáng)度設(shè)計(jì) 9
5.2.3 按齒根彎曲強(qiáng)度設(shè)計(jì) 11
5.2.4 幾何尺寸計(jì)算 12
5.2.5 結(jié)構(gòu)設(shè)計(jì)及繪制齒輪零件圖 12
5.3 空心軸的有限元分析 12
6 制粒系統(tǒng)的設(shè)計(jì)與計(jì)算 19
6.1環(huán)模的加工工藝綜述及結(jié)構(gòu)設(shè)計(jì) 19
6.1.1 環(huán)模的熱處理工藝 19
6.1.2 環(huán)模??椎募庸すに?20
6.1.3 環(huán)模的結(jié)構(gòu) 20
6.1.4 方案設(shè)計(jì) 20
6.2 環(huán)模的參數(shù)計(jì)算 20
6.2.1 環(huán)模厚度計(jì)算 20
6.2.2 環(huán)模單位功率面積 20
6.3 壓輥的設(shè)計(jì)計(jì)算 21
6.4 環(huán)模和壓輥工作間隙的調(diào)整 21
7 設(shè)備拆裝及維護(hù) 23
7.1 制粒機(jī)的使用和維護(hù) 23
7.2 制粒機(jī)的檢修 23
7.2.1 喂料系統(tǒng)拆裝 23
7.2.2 主傳動(dòng)系統(tǒng)拆裝 24
7.2.3 易損件的拆裝 26
8 結(jié)論與展望 29
8.1 結(jié)論 29
8.2 存在的不足及對(duì)未來的展望 29
致 謝 30
參考文獻(xiàn) 31
III
差動(dòng)變速器設(shè)計(jì)
1 緒論
差動(dòng)變速器是由基本型變速器對(duì)差動(dòng)輪系進(jìn)行封閉而成的一種組合式變速傳動(dòng)裝置.基本型變速器一般分為磨擦式、鏈?zhǔn)?、帶式和脈動(dòng)式.通過選取裝置內(nèi)各不同傳動(dòng)參數(shù),可實(shí)現(xiàn)精密調(diào)速并擴(kuò)大基本型變速器承載能力,或者擴(kuò)大基本型變速器的調(diào)速范圍,甚至實(shí)現(xiàn)過零調(diào)速.將基本型變速器和差動(dòng)輪系組合,有利于提高變速器變速范圍,因此差動(dòng)變速器具有很好的開發(fā)空間和市場(chǎng)前景。
針對(duì)差動(dòng)變速器的分析和設(shè)計(jì)較為復(fù)雜的問題,提出了一種對(duì)差動(dòng)變速器進(jìn)行差動(dòng)輪系的配齒計(jì)算方法,以及與變速器的組合裝配設(shè)計(jì)的方法,給出了差動(dòng)變速器的詳細(xì)設(shè)計(jì)過程,并根據(jù)參數(shù)畫出其裝配圖,為同類型傳動(dòng)設(shè)計(jì)提供了理論基礎(chǔ)和方法。
通過分析差動(dòng)無級(jí)變速器中帶式無級(jí)變速工作原理,對(duì)差動(dòng)無級(jí)變速器中的帶輪傳動(dòng)和差動(dòng)輪系及定軸齒輪副進(jìn)行計(jì)算設(shè)計(jì),得到了帶輪急齒輪傳動(dòng)的重要參數(shù),最后對(duì)其組合裝配設(shè)計(jì),實(shí)現(xiàn)了提高無級(jí)變速器的變速范圍。
1.1 設(shè)計(jì)目的和意義
差動(dòng)變數(shù)器是行星齒輪的特殊情況。差動(dòng)輪系還可以將一個(gè)原動(dòng)構(gòu)件的轉(zhuǎn)動(dòng)分解為另外兩個(gè)從動(dòng)基本構(gòu)件的不同轉(zhuǎn)動(dòng)。差動(dòng)輪系可進(jìn)行運(yùn)動(dòng)合成的這種特性被廣泛應(yīng)用于機(jī)床、計(jì)算機(jī)構(gòu)及補(bǔ)償調(diào)整裝置中。
行星齒輪傳動(dòng)的主要特點(diǎn)是體積小,承載能力大,工作平穩(wěn)。但大功率高速行星齒輪傳動(dòng)結(jié)構(gòu)較復(fù)雜,要求制造精度高。行星齒輪傳動(dòng)中有些類型效率高,但傳動(dòng)比不大。另一些類型則傳動(dòng)比可以很大,但效率較低。用它們作減速器時(shí),其效率隨傳動(dòng)比的增大而減?。蛔髟鏊倨鲿r(shí)則有可能產(chǎn)生自鎖。輪系在各種機(jī)械中得到了廣泛的應(yīng)用。
1.2 設(shè)計(jì)任務(wù)
確定設(shè)計(jì)方案;喂料器技術(shù)參數(shù)的確定;電機(jī)參數(shù)的確定;調(diào)制器技術(shù)參數(shù)的確定;主傳動(dòng)系統(tǒng)技術(shù)參數(shù)的確定;主軸剛度的校核計(jì)算;環(huán)模和壓輥配合使用的技術(shù)參數(shù)的確定,壓輥得制作工藝過程;其他相關(guān)說明。完成整機(jī)的三維設(shè)計(jì)、主要部件的組裝圖、重要零件的工程圖、相關(guān)參數(shù)的優(yōu)化。
2 總體方案設(shè)計(jì)
2.1 主要組成結(jié)構(gòu)
圖2.1 差動(dòng)變速器結(jié)構(gòu)圖
AHHC520型制粒機(jī)主要用于中大型配合飼料廠壓制顆粒飼料,也可用于機(jī)械化養(yǎng)養(yǎng)殖場(chǎng)。該產(chǎn)品可以根據(jù)用戶的需求,配備不同??卓讖降膲耗?,生產(chǎn)各種規(guī)格的顆粒飼料,從而用于不同的養(yǎng)殖對(duì)象。該機(jī)喂料、調(diào)質(zhì)、制粒分別采用獨(dú)立傳動(dòng),工作可靠。該設(shè)備主要組成部分有:喂料系統(tǒng),調(diào)質(zhì)系統(tǒng),制粒系統(tǒng),主傳動(dòng)系統(tǒng),過載保護(hù)系統(tǒng)和潤(rùn)滑系統(tǒng)等。
2.2 主要技術(shù)參數(shù)
表2-1 主要技術(shù)參數(shù)表
項(xiàng)目
參數(shù)
生產(chǎn)率(t/h)
4~20
壓模內(nèi)徑(mm)
520
壓輥直徑(mm)
240
模孔直徑(mm)
8
壓模轉(zhuǎn)速(r/min)
382
螺距(mm)
300
調(diào)質(zhì)器轉(zhuǎn)速(r/min)
380
槳葉直徑(mm)
560
螺距(mm)
480
偏心軸偏心距(mm)
15
配套動(dòng)力
主電機(jī)
200KW
調(diào)質(zhì)電機(jī)
5.5KW
喂料電機(jī)
2.2KW
2.3 工作原理與工作過程概述
2.3.1 環(huán)模制粒機(jī)的工作原理
粉狀飼料的制粒過程是一個(gè)連續(xù)壓制過程。它建立在粉狀顆粒間有空隙存在的基礎(chǔ)上。粉狀物料是一種由具有一定流動(dòng)性的分散顆粒組成的不連續(xù)松散體,在擠壓力的作用下粉粒相互移近和重新排列,粉粒間所含氣體不斷逸出,從而使得粉粒間的間隙減小,聯(lián)接力增大,最后被壓制成具有一定密度、一定硬度的顆粒飼料。
在壓粒過程中,飼料的蛋白質(zhì)和糖分受熱產(chǎn)生可塑性,淀粉部分糊化?!皦毫!?,簡(jiǎn)單地說就是一個(gè)擠壓式的熱塑過程。環(huán)模和壓輥是制粒機(jī)的主要工作部件,配合飼料從供料機(jī)構(gòu)較均勻地供給調(diào)質(zhì)機(jī)構(gòu),飼料在調(diào)質(zhì)機(jī)構(gòu)中與水(或其他添加物)混合后,投入制粒機(jī)構(gòu)中。飼料在環(huán)模與壓輥的擠壓下,從壓模的??字袛D出來成為顆粒。從工作過程分析,環(huán)模是主動(dòng)回轉(zhuǎn)零件,而壓輥是靠摩擦而轉(zhuǎn)動(dòng)的。
圖2.2 壓制區(qū)內(nèi)分區(qū)圖
在環(huán)模制粒過程中,粉料在壓制區(qū)內(nèi)所在的位置不同,其受壓輥的壓緊 力亦是不同的。它可劃分為4個(gè)區(qū),即供料區(qū)、壓緊區(qū)、擠壓區(qū)和成形區(qū),見上圖。
在供料區(qū),物料基本不受機(jī)械外力,它處于自然松散狀態(tài),但它受環(huán)模圈回轉(zhuǎn)而產(chǎn) 生離心力影響,使粉料緊貼在環(huán)模內(nèi)圈上。隨著模輥的旋轉(zhuǎn),物料進(jìn)入壓緊區(qū),在此區(qū)域內(nèi),受模輥的擠壓作用,粉粒之間產(chǎn)生相對(duì)移動(dòng),孔隙逐漸減小。隨著物料向前移動(dòng)速度的加快,擠壓力逐漸增加,孔隙更小,但粉?;旧线€未變形。在擠壓區(qū)內(nèi),模輥間隙變小,擠壓力急劇增大,粉粒進(jìn)一步靠緊和鑲嵌,粉粒間的接觸面增大和聯(lián)結(jié)增強(qiáng),粉粒產(chǎn)生變形,并產(chǎn)生了較好的聯(lián)結(jié),同時(shí)將壓緊粉體向??讛D去。經(jīng)過??滓欢伍L(zhǎng)度的飽壓形成顆粒飼料。這一區(qū)段物料將產(chǎn)生彈性、塑性組合變形。在壓??變?nèi)已充滿了已被壓實(shí)成形的飼料柱體,在模孔內(nèi)側(cè)又不斷接受新擠入的粉料,使飼料柱體向外側(cè)推移,排出模孔。這時(shí)擠壓力必須克服??變?nèi)料柱摩擦力的總和。物料在模輥轉(zhuǎn)動(dòng)作用下壓制成顆粒有兩個(gè)條件:一是模輥要把物料攫入變形口,二是壓輥對(duì)物料擠壓力要大于??變?nèi)料柱的摩擦阻力。
2.3.2 環(huán)模制粒機(jī)的主要工作過程
當(dāng)水分含量為12%~14%的配合飼料進(jìn)入混合喂料器后,飼料經(jīng)加入一定量的水蒸汽后,被螺旋漿葉混合攪拌均勻后送進(jìn)調(diào)質(zhì)器內(nèi),進(jìn)行糊化。如果需要,也可以將糖蜜、脂等液體均勻噴灑到物料中去,脂的添加量不得超過3%,以利于成形。調(diào)質(zhì)后的物料水分達(dá)到15%~17%,然后經(jīng)分配器分配到轉(zhuǎn)動(dòng)的環(huán)式壓模和壓輥的工作面上。旋轉(zhuǎn)的壓輥通過與物料的磨擦帶動(dòng)壓輥旋轉(zhuǎn),物料在強(qiáng)烈的擠壓下,克服孔壁的阻力,并不斷從壓??字谐蓷l的擠出。擠出時(shí)被裝置在壓模外的切刀切成長(zhǎng)度適宜的顆粒。切刀的位置可以調(diào)節(jié),以控制顆粒的長(zhǎng)短。剛壓制出的顆粒溫度一般在75~90℃之間,水分在15%~16%左右,必須在經(jīng)過冷卻降溫,揮發(fā)水分使其溫度接近室溫,以便保管儲(chǔ)藏。
3 喂料機(jī)構(gòu)設(shè)計(jì)
喂料機(jī)構(gòu)的作用是將待制粒倉(cāng)中的粉狀物料均勻地輸送到調(diào)質(zhì)部分,其關(guān)鍵是保證輸送速度的穩(wěn)定。傳統(tǒng)的機(jī)構(gòu)通常是依靠螺旋輸送機(jī)來實(shí)現(xiàn)這種功能。螺旋輸送機(jī)又稱“絞龍”,是一種無撓性牽引構(gòu)件的連續(xù)輸送設(shè)備。其結(jié)構(gòu)主要包括料槽、螺旋葉片和轉(zhuǎn)動(dòng)軸組成的螺旋體、兩端軸承和驅(qū)動(dòng)裝置幾部分。工作時(shí),物料由進(jìn)料口進(jìn)入料槽,并在螺旋葉片的推動(dòng)下沿螺旋槽作軸向移動(dòng),直至卸料口被排出。螺旋輸送機(jī)的類型有水平、垂直和傾斜三種形式,本設(shè)計(jì)中選用水平螺旋輸送機(jī)。與其它輸送設(shè)備相比,螺旋輸送機(jī)具有結(jié)構(gòu)簡(jiǎn)單、橫截面積小、密封性好、操作維修安全、方便、制造成本低等優(yōu)點(diǎn),這也正是它被廣泛應(yīng)用的原因之一。
圖3.1 喂料機(jī)構(gòu)簡(jiǎn)圖
3.1 喂料輸送結(jié)構(gòu)設(shè)計(jì)
該設(shè)備的螺旋輸送機(jī)葉片采用單頭滿面式螺旋葉片,螺旋葉片的一邊緊貼在軸上,形成完整的螺旋面。這種葉片構(gòu)造簡(jiǎn)單,輸送能力強(qiáng),便于均勻地輸送粉類物料。
螺旋面采用右旋設(shè)計(jì)方案。由于輸送物料中含有一定水分,為了防止葉片生銹,影響物料輸送和產(chǎn)品質(zhì)量,選用不銹鋼作為葉片材料。同時(shí),由于在工作過程中,葉片磨損比較嚴(yán)重,為了增加其耐磨性,要對(duì)葉片進(jìn)行調(diào)質(zhì)處理,以提高其表面硬度。
螺旋葉片厚度為5mm,螺距為(0.8-1)D,D為螺旋直徑,由于本設(shè)計(jì)采用水平結(jié)構(gòu)設(shè)計(jì),取S=D,機(jī)殼厚度為5mm。
3.2 喂料器參數(shù)計(jì)算
3.2.1 螺旋直徑D與螺旋軸轉(zhuǎn)速n的計(jì)算
根據(jù)?運(yùn)輸機(jī)械設(shè)計(jì)選用手冊(cè)?的公式15-1:
(3.1)
其中,Q:輸送能力,按設(shè)計(jì)要求,取20t/h;
K:物料特性系數(shù),常用物料的k值見?運(yùn)輸機(jī)械設(shè)計(jì)選用手冊(cè)?表15-1,這里取0.0415;
Ψ:填充系數(shù),見?運(yùn)輸機(jī)械設(shè)計(jì)選用手冊(cè)?表15-1,這里取0.35;
C:傾角系數(shù),見?運(yùn)輸機(jī)械設(shè)計(jì)選用手冊(cè)?表15-1,這里取1;
ρ:物料松散密度,見?運(yùn)輸機(jī)械設(shè)計(jì)選用手冊(cè)?表15-6,這里取0.52t/m3,
將數(shù)據(jù)帶入上式,可得
圓整后,取D=0.3m。
根據(jù)?運(yùn)輸機(jī)械設(shè)計(jì)選用手冊(cè)?的公式15-2:
(3.2)
其中,A:物料綜合系數(shù),見?運(yùn)輸機(jī)械設(shè)計(jì)選用手冊(cè)?表15-6,這里取75,
代入上式,得
又由公式?運(yùn)輸機(jī)械設(shè)計(jì)選用手冊(cè)?的公式15-3
(3.3)
計(jì)算得
圓整后,取n=90r/min。
對(duì)D和n圓整后,應(yīng)該對(duì)填充系數(shù)進(jìn)行驗(yàn)算:
(3.4)
未超過上限,故圓整后的D和n值適合。
3.2.2 物料軸向推進(jìn)速度計(jì)算
根據(jù)公式:
(3.5)
式中,V:物料的軸向推進(jìn)速度(m/s);
S:螺旋葉片的螺距(m);
n:螺旋軸轉(zhuǎn)速(r/min);
則物料沿軸向推進(jìn)速度。
3.2.3 電機(jī)的選擇
由于N=1.33 kw,所以驅(qū)動(dòng)軸轉(zhuǎn)動(dòng)的電機(jī)選用YTC型電磁調(diào)速異步電動(dòng)機(jī),該電機(jī)有三相異步交流電機(jī)、渦流離合器與測(cè)速發(fā)電機(jī)組成,并與控制器配合使用,工作時(shí),此電機(jī)能根據(jù)軸上承受載荷的不同自動(dòng)地、無級(jí)地調(diào)整其輸出轉(zhuǎn)速,達(dá)到無級(jí)變速喂料,控制不同喂料量的目的。
3.3 機(jī)槽的設(shè)計(jì)
本設(shè)計(jì)中的機(jī)槽采用法蘭和截面為U字型的鋼制機(jī)槽。U型機(jī)槽的厚度為5mm薄鋼板,其兩側(cè)臂垂直,底部成半圓形,在 U型機(jī)槽的端面焊接有法蘭,用以固定蓋板和端蓋。機(jī)槽半圓的內(nèi)徑大于螺旋葉片半徑,允許少量的物料滯留于槽底,以防葉片與槽底摩擦。
為了對(duì)機(jī)槽進(jìn)行密封,機(jī)槽上部裝有用薄鋼板制成的蓋板,蓋板用螺栓固定在槽體上端的鋼制法蘭上。蓋板可以開啟,以便對(duì)槽體進(jìn)行必要的檢查。蓋板上開有進(jìn)料口,機(jī)槽底部開有卸料口,均做成方形,以便安裝料管。
4 調(diào)制器結(jié)構(gòu)設(shè)計(jì)
調(diào)質(zhì)就是使粉料在高溫、高壓下通入過熱蒸汽,使其熟化的過程。它是顆粒飼料生產(chǎn)中的必然環(huán)節(jié),在這一過程中可使飼料中很多成分發(fā)生變化,其中有些是人們所需要的,而有些則是人們所不希望的。
4.1 調(diào)質(zhì)的作用
在調(diào)質(zhì)過程中最主要的變化就是使飼料中含量較高的淀粉部分發(fā)生糊化,而使淀粉更易被動(dòng)物所消化吸收。這可明顯地提高飼料的利用率;同時(shí)產(chǎn)生的糊精具有較好的適口性,可大大提高飼料的適口性;另外,糊化淀粉可使飼料的黏稠性提高,可起到黏結(jié)劑的作用,這也是在制粒過程中必須進(jìn)行調(diào)質(zhì)的一個(gè)主要原因。
調(diào)質(zhì)中的高溫、高壓可使飼料中大量病原微生物滅活,如常見的沙門氏桿菌及大腸桿菌等。特別是最近一些飼料廠為了生產(chǎn)出高衛(wèi)生標(biāo)準(zhǔn)、無病原菌尤其是無沙門氏菌的產(chǎn)品,在飼料生產(chǎn)時(shí),出現(xiàn)了提高制粒溫度的發(fā)展趨勢(shì)。這些飼料廠家規(guī)定制粒溫度在85 ℃以上,它是有效地殺死沙門氏菌的示值溫度。在國(guó)外更是如此,早在20世紀(jì)80年代末西歐在打“沙門氏菌恐慌”戰(zhàn)時(shí),在調(diào)質(zhì)中首要考慮的就是殺菌的問題,目前西歐已開始采用的擠壓調(diào)質(zhì)二次制粒工藝通常達(dá)到的制粒溫度為90 ℃。
4.2 調(diào)質(zhì)過程的控制
為減少營(yíng)養(yǎng)成分的損失,在制粒過程中要根據(jù)不同的原料組分、含水量及對(duì)產(chǎn)品熟化程度的不同要求來調(diào)整調(diào)質(zhì)時(shí)間。一般來說,調(diào)質(zhì)時(shí)間越長(zhǎng),原料的熟化度越好。淀粉糊化度越高,黏性越好,生產(chǎn)出的顆粒料物理性能就越好,但同時(shí)營(yíng)養(yǎng)物質(zhì)損失也較多。一般飼料原料的調(diào)質(zhì)時(shí)間為10~30 s為宜。但對(duì)各種飼料都合適的一個(gè)調(diào)質(zhì)時(shí)間是不存在的。因此,最重要的創(chuàng)新應(yīng)該是把飼料原料在調(diào)質(zhì)器中滯留時(shí)間設(shè)為一個(gè)可變參數(shù)。
4.3 調(diào)制器總體方案設(shè)計(jì)及計(jì)算
本設(shè)計(jì)方案采用單級(jí)槳葉式調(diào)質(zhì)器,該型調(diào)制器通過改變槳葉的傾斜角度來控制物料的推進(jìn)速度,針對(duì)不同的物料,分別設(shè)定調(diào)質(zhì)器槳葉的傾斜角度,控制物料的調(diào)質(zhì)時(shí)間,實(shí)現(xiàn)調(diào)質(zhì)器的最優(yōu)功能。
調(diào)質(zhì)時(shí)間:
(4.1)
式中,V:調(diào)質(zhì)筒體積();
D:調(diào)質(zhì)筒直徑(m);
:調(diào)質(zhì)筒長(zhǎng)度,取=7D;
:飼料容重(),取v=0.5;
;飼料充滿系數(shù),取k=0.3。
圖4.1 調(diào)制器軸
調(diào)質(zhì)軸輸送量Q1,取壓粒設(shè)計(jì)產(chǎn)量Q的1.5~2.0倍,可初定Q1=1.8Q。
將上述有關(guān)參數(shù)代入調(diào)質(zhì)時(shí)間t計(jì)算式:
(4.2)
(4.3)
對(duì)于一臺(tái)選定產(chǎn)量Q的制粒機(jī)來說,調(diào)質(zhì)時(shí)間t對(duì)D影響很大,為了便于設(shè)計(jì),一般取t=15秒。代入上式,計(jì)算得D=0.5592m。參照市場(chǎng)上同類產(chǎn)品的技術(shù)參數(shù),取調(diào)質(zhì)桶直徑為560mm,長(zhǎng)度3200mm。調(diào)質(zhì)電機(jī)選用Y100L,功率2.2kW,同步轉(zhuǎn)速1500r/min。
5 主傳動(dòng)系統(tǒng)的設(shè)計(jì)
5.1 主電機(jī)的選擇
根據(jù)吳克疇教授摘譯的《混合飼料生產(chǎn)工藝》一書介紹,一臺(tái)飼料壓粒機(jī)的生產(chǎn)率Q可以近似的由下式來計(jì)算:
(5.1)
式中,N:壓粒電動(dòng)機(jī)的驅(qū)動(dòng)功率(KW);
:要壓粒的散料密度(t/);
:壓粒電動(dòng)機(jī)的效率取0.8——0.9;
p:需要壓粒壓力(MPa);
:決定于壓縮率K(未壓粒的散裝物和壓粒后的顆粒密度的比率);
K:壓縮率,可取0.5——0.7;
公式換算得到驅(qū)動(dòng)功率的算法:
(5.2)
已知:Q=10, =0.9,查表得到P=56;=0.5;γ=0.5;
帶入計(jì)算得到N=166.2kW,經(jīng)查表,選取主電機(jī)型號(hào)為Y280L-2 ,額定功率為200KW,同步轉(zhuǎn)速1500r/min。
5.2 主傳動(dòng)計(jì)算
該設(shè)計(jì)方案主傳動(dòng)系統(tǒng)采用直齒齒輪傳動(dòng),主要優(yōu)點(diǎn)是工作可靠,使用壽命長(zhǎng),傳動(dòng)較平穩(wěn),傳遞功率高,結(jié)構(gòu)緊湊,功率和速度適用范圍很廣等。工作時(shí),由電動(dòng)機(jī)帶動(dòng)小、大齒輪,并經(jīng)傳動(dòng)空軸帶動(dòng)環(huán)模轉(zhuǎn)動(dòng),環(huán)模與壓輥擠壓物料成形。
5.2.1 選定齒輪類型、精度等級(jí)、材料及齒數(shù)
1) 選定齒形為直齒圓柱齒輪傳動(dòng)。
2) 作為機(jī)床主軸傳動(dòng),選用7級(jí)精度(GB 10095-88)
3) 材料選擇。由《機(jī)械設(shè)計(jì)》表10-1選擇小齒輪材料為們40Cr(調(diào)質(zhì)),硬度為280HBS,大齒輪材料為45鋼(調(diào)質(zhì)),硬度為240HBS,二者硬度差為40HBS。
4) 選小齒輪齒數(shù)為z1=24,大齒輪齒數(shù)為z2=3.74×24=92.976,取z2=93。
5.2.2 按齒面接觸強(qiáng)度設(shè)計(jì)
由《機(jī)械設(shè)計(jì)》公式10-9a進(jìn)行試算,即
(5.3)
(1) 確定公式內(nèi)的各計(jì)算數(shù)值
1) 試選載荷系數(shù)Kt=1.3.
2) 計(jì)算小齒輪傳遞的轉(zhuǎn)矩。
(5.4)
3) 由《機(jī)械設(shè)計(jì)》表10-7選取齒寬系數(shù)?d=1.
4) 由《機(jī)械設(shè)計(jì)》表10-6查得材料的彈性影響系數(shù)ZE=189.8 MPa1/2.
5) 由《機(jī)械設(shè)計(jì)》圖10-21d按齒面硬度查得小齒輪的接觸疲勞強(qiáng)度極限σHlim1=600MPa,大齒輪的接觸疲勞強(qiáng)度極限σHlim2=550MPa。
6) 由《機(jī)械設(shè)計(jì)》式10-13計(jì)算應(yīng)力循環(huán)次數(shù)。
(5.5)
7) 由《機(jī)械設(shè)計(jì)》圖10-19取接觸疲勞壽命系數(shù)KHN1=0.95,KHN2=0.98.
8) 計(jì)算接觸疲勞許用應(yīng)力。
取失效概率為1%,安全系數(shù)為S=1,由《機(jī)械設(shè)計(jì)》得
(2) 計(jì)算
1)試算小齒輪分度圓直徑d1t,代入[σH]中較小的值。
(5.6)
2) 計(jì)算圓周速度v。
(5.7)
3) 計(jì)算齒寬。
(5.8)
4) 計(jì)算齒寬與齒高之比。
模數(shù)
(5.9)
齒高
(5.10)
5) 計(jì)算載荷系數(shù)。
根據(jù)v=11.50m/s,7級(jí)精度,由《機(jī)械設(shè)計(jì)》圖10-8查得動(dòng)載荷系數(shù)Kv=1.18,;
直齒輪,;
由《機(jī)械設(shè)計(jì)》表10-2查得使用系數(shù)KA=1.25;
由《機(jī)械設(shè)計(jì)》表10-4用插值法查得7級(jí)精度、小齒輪相對(duì)支撐非對(duì)稱布置時(shí),。
由,查圖10-13得;故載荷系數(shù)
6) 按實(shí)際的載荷系數(shù)校正所算得的分度圓直徑,由《機(jī)械設(shè)計(jì)》得
(5.11)
7) 計(jì)算模數(shù)。
(5.12)
5.2.3 按齒根彎曲強(qiáng)度設(shè)計(jì)
由《機(jī)械設(shè)計(jì)》公式10-5得彎曲強(qiáng)度計(jì)算公式為
(5.13)
(1) 確定公式內(nèi)的各計(jì)算數(shù)值。
1) 由《機(jī)械設(shè)計(jì)》圖10-20c查得小齒輪的彎曲疲勞強(qiáng)度極限;大齒輪的彎曲疲勞強(qiáng)度極限;
2) 由圖10-18取得彎曲疲勞壽命系數(shù);;
3) 計(jì)算彎曲疲勞需用應(yīng)力。
取彎曲疲勞安全系數(shù)為S=1.4,由《機(jī)械設(shè)計(jì)》式10-12得
4) 計(jì)算載荷系數(shù)K。
5) 查取齒形系數(shù)。
由《機(jī)械設(shè)計(jì)》表10-5查得,;。
6) 查取應(yīng)力校正系數(shù)。
由《機(jī)械設(shè)計(jì)》表10-5查得,;。
7) 計(jì)算大、小齒輪的并加以比較。
大齒輪的數(shù)值大。
(2) 設(shè)計(jì)計(jì)算
對(duì)比計(jì)算結(jié)果,由齒面接觸疲勞強(qiáng)度計(jì)算得模數(shù)m大于由齒根彎曲疲勞強(qiáng)度計(jì)算得模數(shù),由于齒輪模數(shù)的大小主要取決于彎曲強(qiáng)度所決定的承載能力,而齒面接觸疲勞強(qiáng)度所決定的承載能力,僅于齒輪直徑(即模數(shù)與齒數(shù)的乘積)有關(guān),可取由彎曲強(qiáng)度算得的模數(shù)5.0954mm,就近圓整到標(biāo)準(zhǔn)值m=6mm,按接觸強(qiáng)度算得的分度圓直徑d1=174.887,算出小齒輪齒數(shù)
大齒輪齒數(shù),取。
這樣設(shè)計(jì)出的齒輪傳動(dòng),既滿足了齒面接觸疲勞強(qiáng)度,又滿足了齒根彎曲強(qiáng)度,并做到結(jié)構(gòu)緊湊,避免浪費(fèi)。
5.2.4 幾何尺寸計(jì)算
(1) 計(jì)算分度圓直徑
(2)計(jì)算中心距
(3)計(jì)算齒輪寬度
取B2=180mm,B1=190mm。
5.2.5 結(jié)構(gòu)設(shè)計(jì)及繪制齒輪零件圖
見零件圖AHHC520-ZL-01和AHHC520-ZL-02。
5.3 空心軸的有限元分析
電機(jī)的轉(zhuǎn)矩通過一對(duì)齒輪傳動(dòng)傳遞給空心軸,空心軸帶動(dòng)固定其上的環(huán)模一起旋轉(zhuǎn)。因此,空心軸是主要的傳動(dòng)和連接部件??招妮S的主要制造工藝和計(jì)算如下:
1、 空心軸材料為45鋼;
2、 該軸采用鍛造方式加工,然后再進(jìn)行車削和銑削加工;
3、 空心軸內(nèi)壁設(shè)有軸承支座,為了將環(huán)模和主軸定位,保證兩零件的同軸度,環(huán)模和空心軸用鍵連接,即傳動(dòng)鍵,并用螺栓定位??招闹鬏S結(jié)構(gòu)請(qǐng)參見制粒部分部裝圖AHHC520-ZL-00。
(1)進(jìn)入U(xiǎn)G NX6.0的高級(jí)仿真模塊,并新建FEM和仿真。
(2) 新建解算方案Solution1。
(3) 對(duì)模型施加載荷和約束。
(4) 指派模型材料。
(5) 對(duì)模型進(jìn)行網(wǎng)格劃分。用10mm的CTETRA(4)單元。
(6) 定義了相關(guān)參數(shù)后,即可開始解算。
(7) 解算完成后,查看節(jié)點(diǎn)位移和應(yīng)力云圖,如下:
通過有限元分析,我們可以從云圖上看到,空心軸上變形最大處的位移量在0.0028mm左右,而最大應(yīng)力為4.388MPa,均滿足要求。
6 制粒系統(tǒng)的設(shè)計(jì)與計(jì)算
6.1環(huán)模的加工工藝綜述及結(jié)構(gòu)設(shè)計(jì)
圖6.1 環(huán)模
環(huán)模是顆粒飼料壓制機(jī)的關(guān)鍵零件之一;又是易損件;價(jià)格不菲;其質(zhì)量的好壞和質(zhì)量是否穩(wěn)定,直接影響環(huán)模的使用壽命和顆粒飼料壓制機(jī)的產(chǎn)量、飼料的質(zhì)量,從而影響飼料加工的生產(chǎn)成本。
環(huán)模失效的主要形式是??准碍h(huán)模內(nèi)環(huán)表已磨損報(bào)廢,也有少量環(huán)模開裂和??锥氯磯翰怀隽希┑那闆r。環(huán)模的使用壽命主要與環(huán)模材料、環(huán)模的加工工藝有關(guān),對(duì)同一環(huán)模材料和同一加工工藝,環(huán)模的使用壽命還與飼料配方、飼料生產(chǎn)工藝參數(shù)、工藝操作等有關(guān)。環(huán)模初試壓是否順利出料主要與環(huán)模模孔表面光潔度有關(guān)。目前,國(guó)產(chǎn)顆粒飼料壓制機(jī)的環(huán)模材料常見的有20號(hào)鋼、35號(hào)鋼、45號(hào)鋼、20Cr、40Cr、20CrMnTi、40CrMnMo等中、低碳優(yōu)質(zhì)碳素結(jié)構(gòu)和合金結(jié)構(gòu)鋼,也有少量采用不銹鋼制造。
6.1.1 環(huán)模的熱處理工藝
在常用環(huán)模材料加工工藝中,常見的熱處理方法有正火、調(diào)質(zhì)、淬火、滲碳、滲氮。要針對(duì)不同的環(huán)模材料,綜合考慮這些熱處理方法的特點(diǎn),而安排于機(jī)加工工序之間。正火處理消除內(nèi)應(yīng)力,為下一道工序作準(zhǔn)備。在環(huán)模加工工藝中,正火處理一般安排在鍛造之后或粗加工之前,也有安排在精車之前。經(jīng)正火處理后的環(huán)模,切削性能有所改善,并能適當(dāng)?shù)馗纳萍庸ず蟊砻婀鉂嵍取?
環(huán)模調(diào)質(zhì)的目的能獲得較高的強(qiáng)度和韌性性能,特別是保持環(huán)模心部的綜合機(jī)械性能。在環(huán)模加工工藝中,一般安排在精車,擴(kuò)孔之前或粗加工之后;也可以安排在滲氮之前。對(duì)于中碳優(yōu)質(zhì)結(jié)構(gòu)鋼和合金結(jié)構(gòu)鋼,要注意淬火與高溫回火的時(shí)間間隔不宜過長(zhǎng),否則,因環(huán)模的復(fù)雜結(jié)構(gòu)而可能造成環(huán)模的熱處理裂紋。
環(huán)模的淬火處理常用的冷卻介質(zhì)為水和油。在水中的冷卻速度比在油中快些。如在水中加入0.15%~0.30%的聚乙烯醇,其冷卻介于水和油之間,可得到較好的熱處理組織。淬火一般安排在擴(kuò)孔后或磨削加工之前,可作最終熱處理工藝。
滲碳處理能提高模孔和內(nèi)環(huán)表面的硬度,提高其耐磨性,從而提高環(huán)模的使用壽命。滲碳主要針對(duì)含碳量0.15%~0.25%的優(yōu)質(zhì)結(jié)構(gòu)鋼和低合金鋼如20號(hào)鋼、20Cr、20CrMnTi等。
6.1.2 環(huán)模??椎募庸すに?
環(huán)模??妆砻婀鉂嵍戎苯佑绊懎h(huán)模生產(chǎn)飼料時(shí)是否順利出料的關(guān)鍵。一般用人工進(jìn)給的鉆孔工藝很難達(dá)到其要求的光潔度。而進(jìn)口的多工位鉆孔專用機(jī)床由于設(shè)備價(jià)格昂貴和其鉆頭依賴進(jìn)口,導(dǎo)致環(huán)模制造成本增加。有的廠家采用專用機(jī)床,雖然能達(dá)到光潔度要求,但生產(chǎn)成本也比較高。利用普通鉆床經(jīng)過改進(jìn)并輔以必要的工裝,能夠?qū)崿F(xiàn)鉆(擴(kuò))孔半自動(dòng)化,取得令人滿意的環(huán)模??妆砻婀鉂嵍群洼^高的生產(chǎn)效率,降低制造成本;其方法是利用單片機(jī)控制兩個(gè)步進(jìn)電機(jī),其中一個(gè)步進(jìn)電機(jī)控制鉆(擴(kuò))孔進(jìn)給方式,另一個(gè)步進(jìn)電機(jī)控制環(huán)模的轉(zhuǎn)角,達(dá)到自動(dòng)轉(zhuǎn)動(dòng);經(jīng)加工后模孔表面光潔度可達(dá)0.8,產(chǎn)品質(zhì)量穩(wěn)定,生產(chǎn)成本降低,自動(dòng)化程度大為提高。通過不同的編程,可改變鉆(擴(kuò))孔的鉆頭或(銑刀)的進(jìn)給運(yùn)動(dòng),可分一步或多次對(duì)同一孔進(jìn)行加工;更換不同直徑的鉆頭(或銑刀),可加工不同直徑??椎沫h(huán)模。
6.1.3 環(huán)模的結(jié)構(gòu)
環(huán)??椎男螤钆c尺寸也對(duì)產(chǎn)品的質(zhì)量和生產(chǎn)率大小有很大影響。一般??椎慕孛娉蕡A形,有四種:直形孔、階梯孔、外錐孔和內(nèi)錐孔。按孔徑大小可以分為兩種:內(nèi)小外大、內(nèi)大外小,前者用于??讖叫∮?0mm,后者用于??諒酱笥?0mm,其所以有此差別是有利于成形。直孔和階梯孔適于配合飼料的制粒,但是,階梯孔不常用,外錐孔適于脫脂糖等高纖維飼料,內(nèi)錐孔使于草粉類體積大的飼料,由于直形孔加工簡(jiǎn)單,用得最為廣泛。進(jìn)料口有三種形式:直孔、錐孔和曲線孔。采用曲線孔效果好,但加工困難。因此,常采用直形孔口。錐孔角度一般為60~120度。環(huán)模工作面的開孔率對(duì)生產(chǎn)率有很大影響。在考慮環(huán)模有足夠強(qiáng)度的條件下盡可能提高開孔率,??滓话阋哉切闻帕?,孔間距為3~5 mm。
6.1.4 方案設(shè)計(jì)
本設(shè)計(jì)方案主要參數(shù)如下:環(huán)模材料為20CrB,滲氮處理。環(huán)模內(nèi)徑為250mm;孔徑取8mm;??咨疃?0mm;環(huán)模有效工作寬度185mm;??撞捎弥毙涂自O(shè)計(jì),錐孔角60度,孔在環(huán)模外表面呈正三角形排列。
6.2 環(huán)模的參數(shù)計(jì)算
6.2.1 環(huán)模厚度計(jì)算
環(huán)模的厚度根據(jù)物料特性和??卓讖接?jì)算,壓制不同的飼料,需要采用相應(yīng)的最佳長(zhǎng)徑比,以獲得高質(zhì)量的顆粒。
模孔直徑取為8mm,同時(shí)取模孔深度為80mm,則徑深比為
故環(huán)模內(nèi)徑為520mm,外徑為680mm。
6.2.2 環(huán)模單位功率面積
單位功率面積是指壓粒主電機(jī)每千瓦所對(duì)應(yīng)的環(huán)模有效壓帶面積,是衡量制粒機(jī)性能的重要參數(shù),也是設(shè)計(jì)制粒機(jī)的主要依據(jù)。
單位面積功率的計(jì)算公式如下:
(6.1)
其中,S:環(huán)模亞帶有效面積;
D:環(huán)模內(nèi)徑;
b: 環(huán)模壓帶寬
A0=(3.14×520×185)/200=1510.34(mm2/kW)
基本符合正常的取值。
6.3 壓輥的設(shè)計(jì)計(jì)算
壓輥是制粒機(jī)的主要部件之一,它與環(huán)模配套使用,二者對(duì)粉狀飼料進(jìn)行積壓,使其成形。本設(shè)計(jì)方案在制粒室中采用兩個(gè)壓輥。
壓輥是用來向壓模擠壓物料的,為防止打滑和增加攫取力,壓輥表面采取增加摩擦力和耐磨措施:在壓輥上按壓輥軸向拉絲。本設(shè)計(jì)方案壓輥采用40Cr,調(diào)質(zhì)處理后硬度為:HRC49。壓輥直徑的大小直接影響壓粒時(shí)物料攝入角,故在盡可能的條件下,應(yīng)采用大直徑的輥,兩壓輥得環(huán)模制粒機(jī),壓輥直徑d與環(huán)模內(nèi)徑D的關(guān)系為:2d
收藏