1785_氣門搖臂軸支座的機械加工工藝及夾具設(shè)計
1785_氣門搖臂軸支座的機械加工工藝及夾具設(shè)計,氣門,搖臂,支座,機械,加工,工藝,夾具,設(shè)計
1畢業(yè)設(shè)計(論文)外文文獻翻譯題目對輸送機用于食品輸送系統(tǒng)的調(diào)查設(shè)計和制造專 業(yè) 名 稱 機械設(shè)計制造及其自動化班 級 學(xué) 號 078105301學(xué) 生 姓 名 呂途指 導(dǎo) 教 師 于斐填 表 日 期 2011 年 04 月 09 日2對輸送機用于食品輸送系統(tǒng)的調(diào)查設(shè)計和制造S.H. Masood · B. Abbas · E. Shayan · A. Kara收稿日期:2003 年 3 月 29 日/接受日期:2003 年 6 月 21 日/線上發(fā)表于:2004 年 6 月 23 日?施普林格出版社倫敦有限公司 2004摘要:本文介紹食品飲料行業(yè)的研究調(diào)查結(jié)果和進行開發(fā)的方法技術(shù),在設(shè)計制造和使用的系統(tǒng)裝配機械輸送中縮短時間和成本。該輸送機部件在設(shè)計和生產(chǎn)材料的基礎(chǔ)上改進技術(shù)來最小化零部件和成本,利用裝配設(shè)計和制造的設(shè)計規(guī)則。最終獲得一個測試驗證了改良技術(shù)的傳送系統(tǒng)。相比傳統(tǒng)的方法整體材料成本下降了19%,整體組裝成本降低 20%。關(guān)鍵詞:裝配 降低成本 設(shè)計 DFA DFM 機械輸送機1 引言食品和飲料業(yè)中使用的輸送系統(tǒng)是高度自動化定制結(jié)構(gòu)部件組成的,并進行線路設(shè)計的產(chǎn)品,如食品箱,飲料瓶,罐快速組裝生產(chǎn)。大部分飲料食品的加工包裝涉及到組裝業(yè)務(wù)持續(xù)經(jīng)營情況,瓶或罐需移動或控制的速度。它們的移動需要高效率和可靠的機械輸送機,從哪個范圍的類型到地板鑲嵌鏈子、路輾或者皮帶傳動的輸送機系統(tǒng)的類型。近年來,巨大的機械壓力輸送系統(tǒng)向客戶提供低成本而高效率的輸送機,制造商傾向?qū)彶槠淠壳暗脑O(shè)計和裝配方法,看看另一種制造手段,可靠的輸送機為他們的客戶提供更經(jīng)濟的生產(chǎn)。目前,大多數(shù)材料處理設(shè)備,包括硬件和軟件,成本高,安裝和維護不靈活[1]。輸送機是固定的地點和傳送帶有條件地根據(jù)自身的同步速度,使得任何輸送系統(tǒng)非常困難和昂貴。在今天徹底變化的工業(yè)市場,有需要實施新的制造策略,新系統(tǒng)業(yè)務(wù)概念和新的系統(tǒng)控制軟件和硬件開發(fā)的概念,即可以應(yīng)用于材料設(shè)計的,靈活的新一代開放處理系統(tǒng)[2]。侯和巒琪兩人提出了一種新3的模塊化和可重構(gòu)的二維和三維輸送系統(tǒng),該系統(tǒng)包括一個開放的可重構(gòu)軟件體系結(jié)構(gòu)的基礎(chǔ)上的 CIM - OSA 的(開放系統(tǒng))模型。據(jù)指出,在飲料行業(yè)研究領(lǐng)域的改善輸送系統(tǒng)中使用的是非常有限的。大多數(shù)已發(fā)表的研究是針對提高系統(tǒng)的運行輸送機一體化系統(tǒng)和高度復(fù)雜的軟件和硬件。本文提出的研究調(diào)查是旨在改善目前的技術(shù)和實踐中使用的設(shè)計,制造和裝配式鏈?zhǔn)捷斔蜋C驅(qū)動機械,以降低制造所需的時間和輸送成本等。部分應(yīng)用并行工程的概念和幾個重要的輸送機制造的設(shè)計原則和設(shè)計組裝[4,5],為它們的功能進行了研究。材料的適用性,強度準(zhǔn)則,成本和裝配用于在整個運輸系統(tǒng)。關(guān)鍵部件進行了修改和重新設(shè)計新的形狀和幾何形狀,材料和一些新的。改進后的設(shè)計方法和部分新功能進行了核實。輸送機上測試新的考驗輸送系統(tǒng)設(shè)計,制造和組裝使用新的改進的部分。2 制造和裝配的設(shè)計(DFMA)近年來,研究關(guān)于在圖紙面積上和設(shè)計制造,已成為非常有用的方法,為了產(chǎn)業(yè),必須考慮改善其設(shè)施和制造業(yè)。然而,沒有足夠的相關(guān)工作做了特別的研究,輸送配件的設(shè)計在方法問題上越來越多的傳統(tǒng)的數(shù)據(jù)處理和重新繪制的工程設(shè)計輸送機的基礎(chǔ)。大量的論文已發(fā)表有相關(guān)的問題進行調(diào)查 DFMA 和應(yīng)用各種方法,以實現(xiàn)經(jīng)濟的結(jié)果,證明,有效率和有效的公司根據(jù)成本調(diào)查的。DFMA 知識的主要分類,可確定為:(1)一般準(zhǔn)則, (2)公司特定的最佳實踐(3)具體過程和或資源的困難。其中設(shè)計人員應(yīng)該知道,一般準(zhǔn)則是指普遍適用的規(guī)則的,涉及到制造業(yè)領(lǐng)域。下面已經(jīng)編制準(zhǔn)則對于 DFM 的清單 [6].? 設(shè)計最低數(shù)量的零件? 開發(fā)一個模塊化設(shè)計? 盡量減少部件的變化? 設(shè)計部件是多功能? 為多用途設(shè)計零件? 為簡化設(shè)計,零件制造? 避免單獨緊固件4? 最大化遵守:為簡化設(shè)計,裝配? 盡量減少處理:處理演示設(shè)計? 評估裝配方法? 消除調(diào)整? 避免彈性元件:他們是難以操作? 已知部分功能的使用? 允許零件的最大的不容忍現(xiàn)象? 使用已知的和經(jīng)過驗證的廠商和供應(yīng)商? 在強制降級的值使用部分無邊際過度緊張? 盡量減少部件? 著中標(biāo)準(zhǔn)化? 使用最簡單的操作? 已知使用行動能力? 盡量減少設(shè)置和干預(yù)? 分批承接的工程變更這些設(shè)計準(zhǔn)則應(yīng)被看作是最優(yōu)的“建議” 。他們通常會導(dǎo)致高品質(zhì),低成本的設(shè)計和制造。有時必須作出妥協(xié),當(dāng)然。在這種情況下,如果一個準(zhǔn)則替代違背了市場營銷或性能要求,下一個最好應(yīng)選擇[7]。公司具體的最佳實踐是指在內(nèi)部設(shè)計規(guī)則。公司的開發(fā),通常在一個較長時期,而設(shè)計者將堅持自己的信念。這些設(shè)計規(guī)則,確定由該公司為促進特定工藝和設(shè)計決定,以全面提高質(zhì)量和效益之間的關(guān)系通過承認(rèn)。公司使用的培訓(xùn)等指導(dǎo)方針的一部分給予設(shè)計師或維修產(chǎn)品的手工裝配需要相當(dāng)數(shù)量的。注意這些方法大部分是定量善于要么被快速方便地啟動或更加正式和。例如,準(zhǔn)則由 Boothroyd 和杜赫斯特[8 DFA 的]就被視為是定量化,系統(tǒng)化。鑒于 DFM 指導(dǎo)方針,這僅僅是從經(jīng)驗豐富的專業(yè)經(jīng)驗法則推導(dǎo),更不正式的定性和[9]。5Fig. 1. Layout of conveyor systemfor labelling plasic bottles3 傳統(tǒng)的輸送系統(tǒng)的設(shè)計系統(tǒng)的設(shè)計和制造輸送機是一個非常復(fù)雜和耗時的過程。由于每種輸送系統(tǒng)是一種特制的產(chǎn)品,每個項目都有各個不同的項目規(guī)模,產(chǎn)品和布局。該產(chǎn)品系統(tǒng)的設(shè)計是根據(jù)客戶的要求和明確說明.此外,系統(tǒng)布局應(yīng)適應(yīng)公司提供的空間。在修訂過程中的輸送系統(tǒng)的設(shè)計布局,可以采取包括從幾天到幾個月,或在某些情況下的幾年。一個適宜的最低成本和最大限度滿足客戶的要求是最有可能得到批準(zhǔn)。圖 1 顯示了一條生產(chǎn)線,示意圖中是一個典型的輸送系統(tǒng)中安裝使用的塑料瓶的標(biāo)簽。輸送系統(tǒng)的不同部分被確定具體的技術(shù)名稱,它通常用在類似的工業(yè)應(yīng)用。該“singlizer”一節(jié)使產(chǎn)品形成一個小巷里從多個。在“減速表”降低產(chǎn)品的速度,一旦退出從填料,貼標(biāo)機等的“流量”部分用于處理與保持高速,例如,填料,貼標(biāo)機等的“轉(zhuǎn)移表”轉(zhuǎn)移的方向,產(chǎn)品流通。各節(jié)的目的,因此,這些不同的輸送機控制加工機產(chǎn)品流經(jīng)不同。一個典型的機械輸送系統(tǒng)應(yīng)用用于食品和飲料包含超過 200 機械及零件根據(jù)系統(tǒng)的大小。體系中的一些共同輸送的重要組成部分,但可以統(tǒng)一的,積累到家庭側(cè)架,間隔棒,端板,蓋板,彎板內(nèi),外彎板,彎軌和軸(驅(qū)動器,尾部和奴隸) 。零件的大小和數(shù)量,這些根據(jù)所輸送機的長度和數(shù)量節(jié)軌道相應(yīng)的寬度和鏈類型的需要。存在的問題和缺點在目前的設(shè)計,制造和裝配輸送機械是多方面的,但包括:6? 對一些部件的設(shè)計? 一些部件成本高? 在裝配的/維修時間長? 使用非標(biāo)件4 區(qū)改善為了確定該地區(qū)的主要輸送機零件。進行成本分析,降低材料的成本和一切勞動,以估計這種百分比在相對于總成本的所有各部分的成本。分析這樣做的目的是找出關(guān)鍵部件,主要負(fù)責(zé)零部件的成本增加了輸送機等調(diào)查手段,從而為降低成本。表 1 顯示了輸送系統(tǒng)的成本分析 50 節(jié)。分析結(jié)果顯示,12 件在 15 個構(gòu)成 79%的成本降低總材料成本的,在輸送系統(tǒng)進一步改進設(shè)計是可能的。在這些,確定了7 個部分,如表 1 星號的關(guān)鍵部分一(表現(xiàn)出)構(gòu)成的最大數(shù)量的元件數(shù)量和成本,包括材料 71%以上的整體。其中,三個組成部分(腿組,側(cè)架和支持渠道)被發(fā)現(xiàn)50%的費用占了總輸送材料。其中一名 12 件詳細(xì)分析每進行審議大會的各項原則并行設(shè)計工程,設(shè)計和制造,以及一個新的改進設(shè)計,開發(fā)的每一個案件[10]。組件的主要設(shè)計改進的細(xì)節(jié)部分選定如下。5 重新設(shè)計一套裝配小腿在輸送系統(tǒng)中,安裝在腿的側(cè)架,是以保持整個輸送系統(tǒng)離地?,F(xiàn)有輸送工作設(shè)計的腿費用昂貴。他們有關(guān)于穩(wěn)定方面的問題,并導(dǎo)致交貨延誤研究。該延遲時間通常是由一些對供應(yīng)商的零部件來自海外尚未到位。在輸送中雙腿所需最關(guān)鍵的規(guī)格是:7? 輸送帶負(fù)荷強度足夠? 穩(wěn)固? 易于組裝? 好的靈活性(調(diào)整高度)圖 2 表示輸送站所有設(shè)計的零件現(xiàn)有的。這表明數(shù)字是一部分腿數(shù)字表 2 中描述,這也顯示了一套完整的分類,以組建一個完整的成本分析與所需時間的勞動?,F(xiàn)行體制包括塑料腿腿從海外訂購括號,不銹鋼管腿,這是圖切割成指定大小,腿管塑料調(diào)整,這是在管腿夾到底部,如圖所示。 2。片,這是大小切成正方形,鉆孔和焊接管的腿交叉角螺栓支撐板,以支持和后盾腿支架螺栓。 2#表中反映出的零件數(shù)目的每個部件和組件的數(shù)量是設(shè)計消費的腿在每一部分。對于許多客戶通過幾年常見的投訴舉報公司已經(jīng)改進使用了這種設(shè)計,但其中一個是腿部的不穩(wěn)定。從初步調(diào)查后,很明顯,該圖連接之間的不銹鋼管和塑料腳支架(第一部分和第三部分。二)未嚴(yán)格不夠。這些部件的連接的只是一個 6 毫米的螺栓。有時,當(dāng)輸送系統(tǒng)進行完整的產(chǎn)品負(fù)載,有人指出,在輸送的腿,造成不穩(wěn)定的機械振動。一個主要的原因,這是由于在 3 月底單螺栓連接各表耳部分和第 7 部分。該輸送機被認(rèn)為是穩(wěn)定的關(guān)鍵問題,并要求立即整改,以滿足客戶的期望。考慮到設(shè)計問題,對現(xiàn)有客戶喜好的輸送腿,開發(fā)一輸送腿的新設(shè)計。一般來說,穩(wěn)定和腿部力量的被視為點通車的主要標(biāo)準(zhǔn),在新設(shè)計的改進建議,但其他的考慮是最小化的設(shè)計簡潔,集會在海外部分緩解。圖 3 顯示了,腿裝配新設(shè)計的輸送的,而附表三則顯示的說明和各部分的成本。8Fig. 2. Existing leg design assembly with partnames shown in Table 19Fig. 3. New design for leg assembly with partnames in Table 3圖 3 顯示,新設(shè)計腿只包含 5 至 8 個輸送機的主要部件。在舊的設(shè)計,塑料腿支架,腿管塑料管的調(diào)整和腿是最昂貴的項目向大會占 72%的腿部的成本。在新的設(shè)計方案,這些地方已經(jīng)取代不銹鋼的角度和新的塑料腿調(diào)整減少了近 50%,裝配成本的腿。因此,在小腿部分的總數(shù)已經(jīng)減少 19 至 15 日,每站的總安裝成本降低了 55 美元的新設(shè)計。新的輸送站的設(shè)計,測試時,發(fā)現(xiàn)更安全和穩(wěn)定的設(shè)計,比舊的。 1 消除零件編號和 5 歲的輸送機設(shè)計,使新的設(shè)計更穩(wěn)定和僵化。此外,設(shè)計寬度交叉支撐,也增加了兩個螺栓安裝,而不是老一英寸這提供了整個輸送站安裝額外的力量。106 重新設(shè)計的側(cè)架側(cè)架是輸送系統(tǒng)的主要部件,提供輸送機和幾乎所有的安裝部分。側(cè)架也將有一個剛性的力量,提供支持所有的負(fù)載進行輸送。它也容納輸送配件為大會所有關(guān)聯(lián)的。側(cè)架設(shè)計的關(guān)鍵考慮因素是:? 側(cè)架(深度尺寸)? 強度的材料? 易于裝配? 易于制造圖 4 顯示了側(cè)架尺寸和參數(shù)。側(cè)架設(shè)計用于現(xiàn)有似乎是合理的深度的大?。ǔ叽鐖D的 H。4) 。從最初的調(diào)查,發(fā)現(xiàn)該圖之間的間隔距離,并返回軸桿洞(尺寸的G 和 F。四)可以減少,因為有一些不必要的兩個組成部分之間的差距。重要的一點,檢查前重新設(shè)計參數(shù),以確保將那些經(jīng)過兩個緊密,返回連鎖店將趕不上間隔欄,而輸送機運行。設(shè)計模型是新的側(cè)架民航處開出,以確保所有的規(guī)格是健全和部分放置在適合的位置,以檢查和許可。使用框架的設(shè)計原理設(shè)計制造了新的一面對稱,使其適用于所有類型的側(cè)架。這一變化預(yù)計將減少邊尺寸鏈框架的各種規(guī)模的顯著。Fig. 4. Side frame dimensions表 4 顯示了一個比較舊的設(shè)計尺寸和新設(shè)計的側(cè)架為同一鏈條的類型。據(jù)指出,總體規(guī)模(深度輸送機)的生產(chǎn)已經(jīng)減少) ,從而使儲蓄 42 毫米不銹鋼側(cè)面由 199二百四十一毫米每到毫米(尺寸 H 牌照的時間表。因此,從不銹鋼板 1500 × 300011毫米,舊設(shè)計參數(shù)只允許 6 個 3 米長的側(cè)架,但與新的設(shè)計參數(shù)現(xiàn)在有可能產(chǎn)生同樣的紙張尺寸 7 側(cè)架的 3 米長的。該材料使用量的幀側(cè)也進行了審查作進一步調(diào)查。據(jù)估計,約有 55%的輸送系統(tǒng)的總費用是花在材料。目前框架材料用于一邊是 2.5毫米厚的不銹鋼食品級 304。目前,有一個選擇,因為其他材料認(rèn)為可以在市場上與其他被厚度可能。為此,一撓度進行了分析估計,如果有任何其他類型的合適的材料,以取代現(xiàn)有的材料,以便它不會失敗的強度準(zhǔn)則。6.1 側(cè)架撓度分析圖 5 顯示確定偏轉(zhuǎn)新框架方面的條件不同載荷下的 X 和 Y 方向的實驗裝置通過。使用新的設(shè)計參數(shù)的框架集制造,被調(diào)查方側(cè)架的偏轉(zhuǎn)上 1.6 毫米厚的不銹鋼。阿方條架螺栓與墊片是酒吧和回報軸實驗測試與組裝的。為偏轉(zhuǎn)的結(jié)果,得到了運用液壓機上的可變負(fù)載側(cè)架條通過。如圖所示。 5,撓度測量儀是垂直放置(Y)和水平(X)軸來衡量任何閱讀觀察到側(cè)框。上應(yīng)用的負(fù)載側(cè)架通過向下方向液壓機英寸的側(cè)架是站在支持由同一位置的腿架安裝在一邊。三個實驗組進行的是四,六,八節(jié)軌道輸送機,觀察大負(fù)荷下的任何異常。在加載應(yīng)用在實驗輸送部分超過估計,并在實際應(yīng)用更高的系統(tǒng)比實際輸送負(fù)荷條件。該輸送機通常設(shè)計行業(yè)負(fù)荷下進行,每 1 噸米飲料工業(yè)應(yīng)用在食品和。應(yīng)用負(fù)載的目的是要估計的大框架下高負(fù)荷點撓度側(cè)。圖 6 和圖 7 顯示,分別是 6 首曲目結(jié)果4 軌跡和實驗用于傳送路段。Fig. 5. Experimental set up to investigate deflection on new side frame design12Fig. 6. Deflection results for 4-track 1.6 mm stainless steel side frameFig. 7. Deflection results for 6-track 1.6 mm stainless steel side frame從取得的成果,它是根據(jù)觀察到的 2 載荷千牛,撓度值在 2 毫米的幾乎所有類型的路段。在給定的情況下,1.6 毫米不銹鋼側(cè)架的設(shè)計可以是一個可能替代現(xiàn)有的輸送機側(cè)架設(shè)計。據(jù)預(yù)計,隨著更廣泛的輸送機部分,側(cè)架的變形將保持在允許的范圍內(nèi),即± 5 毫米。主要的原因是進行這項實驗,以確保不扣側(cè)架在高負(fù)荷。因此,沒有任何證據(jù)節(jié)輸送屈曲發(fā)生的任何類型的使用。還預(yù)計,基于工程師的經(jīng)13驗和調(diào)查研究在當(dāng)前,組裝完成后作出的,懷孕的傳送帶將額外的力量,這將進一步減少幀的可能性偏轉(zhuǎn)側(cè)面。偏轉(zhuǎn),例如,測量每向外一套實驗。隨著腿架安裝在一邊,將采取行動的力量在相反方向,將推動側(cè)架向內(nèi)。在這個假設(shè)完全觀察時,可以斷定是一個完整的測試輸送機制造和測試基于新的設(shè)計參數(shù)。與所有的實驗獲得的結(jié)果,這一結(jié)果表明,1.6 毫米不銹鋼側(cè)架 304 級,可用于工業(yè)生產(chǎn)的飲料和食品輸送機下加載指定的指導(dǎo)方針。節(jié)省的費用在這方面預(yù)計將系統(tǒng)重要,因為 80%用在輸送材料是鋼由不銹鋼。該材料審查和撓度的分析表明,現(xiàn)有的 2.5 毫米的不銹鋼板輸送機的應(yīng)用是一個對設(shè)計的側(cè)架的飲料食品和。分析還表明,1.6 毫米厚的不銹鋼板可以得到圓滿作為其功能的替代材料的側(cè)架,其中表演節(jié)目。表 5 顯示了比較舊的成本和 37(新設(shè)計的側(cè)架,這表明儲蓄是每側(cè)架新設(shè)計預(yù)計將達即節(jié)省了 50.1%) 。除了這個節(jié)省成本,減少了尺寸側(cè)架的 241 毫米至一百九十九毫米還將允許側(cè)架生產(chǎn)出來的一個額外的 3000 × 1500 毫米不銹鋼薄板。新的設(shè)計也進行了改進,在其他一些關(guān)鍵部件和組裝等支持渠道,返回輥軸,間隔棒,支持穿帶及支持方穿帶,這導(dǎo)致進一步的節(jié)省成本和勞動力,也容易制造。例如,裝帶新設(shè)計的支持渠道大會的支持(包括穿帶及側(cè))需要減少進程數(shù),減少成本的渠道和提供使用不同類型的鏈節(jié)給予穿厚度帶鋼新的 M 1,使用節(jié)省 33.7%這一改進設(shè)計。新設(shè)計的輥軸的回報提供了 44.5%,節(jié)約成本和勞動時間減少 50%。新設(shè)計的間隔欄所提供的估計有 25%的成本節(jié)約從舊設(shè)計。7 設(shè)計實施測試輸送系統(tǒng)該部分的執(zhí)行部件和設(shè)計改進的關(guān)鍵是進行個別設(shè)計出的,制造和系統(tǒng)組裝一個正式的測試輸送。這種新的和改進的輸送機進行了測試檢驗和)驗證瓶(塑料的性能與實際產(chǎn)品。還有一個成本分析的基礎(chǔ)上進行比較舊的設(shè)計一致的整體輸送成本與所涉及的成本節(jié)約與輸送機在這個測試中[7]。新的測試傳送帶是一個 singleiser 類型(圖 8) ,包括長度為 5 米,總?cè)齻€不同章節(jié) C1 是第 6 條軌道輸送第 C2 的加入,這是一個 6 通道 90?彎曲輸送機。這是第C3 連接到輸送,這是兩種不同類型的連鎖 8 軌與組合輸送部分,制表和 STR。測試輸送機共載有 26 個主要部分。圖 9 顯示了用于測試輸送流量測試產(chǎn)品在合作公司。部件的性能和效率的新的測試新的輸送機及其關(guān)鍵的順利進行了測試,靜音表現(xiàn)觀察輸送帶產(chǎn)品流于空飲料瓶塑料。所有的部件和輸送系統(tǒng),發(fā)現(xiàn)顯示的全功能令人滿意的表現(xiàn)。14一個完整的測試傳送帶上進行成本分析,以衡量亦有差異新舊設(shè)計和評估開支減輕裝配勞動和減少英寸部件數(shù)量,使用的材料和制造成本分別計算出各部分儲蓄率和各部分和整體系統(tǒng)進行了測定。Fig. 8. A singliser test conveyorFig. 9. Test conveyor assembly: product flow test8 結(jié)果和討論該地區(qū)輸送系統(tǒng)最重要的考慮是,以檢查是否設(shè)置了新的支持渠道和滴水托盤加入進行了以較少的勞動消耗。還注意確保勞動者一直有效履行職責(zé)的。輸送系統(tǒng)組裝的時代用于預(yù)計的因素取決于工人的情緒及其他外部。但已作出努力,以達到15最接近可能的時間來制造輸送機。一個成本分析研究揭示了以下事實:? 對八個部分進行設(shè)計的共 12 個改善,取得了更多地節(jié)約 40%的制造成本。其他1%的三個部分取得了節(jié)省 26 至 34%成本。? 在昂貴費用的部分,最大范圍內(nèi)實現(xiàn)一方節(jié)余,返回輥軸,腿穿帶設(shè)置和支持。? 該輸送機的總成本減少了 19%。? 該輸送機整體勞動成本在大大減少了 20%。據(jù)觀察所得,儲蓄的主要目的是取得在傳動機零件中沒有被專業(yè)設(shè)計的零件。系統(tǒng)的傳送帶上的一個重大變化是會影響側(cè)架的設(shè)計參數(shù),這也影響到其他部分的變化。其次,開發(fā)新渠道的 M 帶沿剖面的支持與標(biāo)準(zhǔn)磨損增加新的重大成就輸送機設(shè)計。設(shè)計完成的新的降低了勞動成本,也取得了重大的影響和改進設(shè)計制造裝配線上的。與會者還注意到,通過分類數(shù)設(shè)計了不同的間隔條軌道改進了選拔程序。新的傳送系統(tǒng)變得更經(jīng)濟,成本效益以及需要使用額外的強度材料被淘汰。9 結(jié)論在設(shè)計和制造機械輸送系統(tǒng)中,相當(dāng)缺乏輸送機優(yōu)化設(shè)計的一個研究工作,特別是缺乏一個將現(xiàn)代化的技術(shù)應(yīng)用到這種系統(tǒng)的設(shè)計改進研究中。為了提高測試的成本和交貨時間,對輸送機輸送系統(tǒng)進行完整的故障分析和評估,在輸送機制造業(yè)中舉辦評估高消費區(qū)域。分析應(yīng)用系統(tǒng)支持的功能和運作原則,在不犧牲系統(tǒng)的功能和操作上改進面向裝配的設(shè)計。一種在新的輸送機設(shè)計基礎(chǔ)上提出了所有建議使用的修改。和公司通過合作對這些建議進行了驗證測試。結(jié)果證明是成功的達到了整體成本的 19%和節(jié)省降低 20%總勞動成本。研究結(jié)果證實,通過應(yīng)用 DFMA 的規(guī)則,一個復(fù)雜系統(tǒng)的設(shè)計和裝配輸送食品機械的成本可大大減少。參考文獻1. Anderasen MM, Ahm T (1986) Flexible assembly system. Springer,Berlin Heidelberg New York2. Ho JKL, Ranky PG (1994) The design and operation control of a 16reconfigurable flexible material handling. Proceedings of 1994 Japan-USA Symposium of Flexible Automation, vol. 2, Kobe, Japan, pp 825–8283. Ho JKL, Ranky PG (1997) Object oriented modelling and design of reconfigurable conveyors in flexible assembly systems. Int J Comput Integr Manuf 10(5):360–3794. Kusiak A (1990) Intelligent manufacturing systems. Prentice Hall, New York5. Corbett J, Dooner M, Meleka J, Pym C (1991) Design for manufacturing: strategies principles and techniques. Addison-Wesley, UK6. Mize JH, Glenn P (1989) Some fundamentals of integrated manufacturing. International Industrial Engineering Conference Proceedings, Washington, DC, pp 546–5517. Mize JH (1987) CIM–a perspective for the future of IE’s. IIE Integrated Systems Conference Proceedings, Nashville, TN, pp 3–58. Boothroyd G, Dewhurst P (1988) Product design for manufacturing and assembly. Manuf Eng April:42–469. Bedworth DD, Henderson MR, Wolfe PM (1991) Computer integrated design and manufacturing. McGraw-Hill, Singapore10. Abbas B (2001) An investigation into design and manufacturing of mechanical systems for food processing and beverage industry. Dissertation, Swinburne University of Technology, Hawthorn, Australia畢業(yè)設(shè)計(論文)外文文獻翻譯題目氣門搖臂軸支座的機械加工工藝及夾具設(shè)計專 業(yè) 名 稱 機械設(shè)計制造及其自動化班 級 學(xué) 號 078105301學(xué) 生 姓 名 呂途指 導(dǎo) 教 師 于婓填 表 日 期 2010 年 04 月 08 日學(xué)士學(xué)位論文原創(chuàng)性聲明本人聲明,所呈交的論文是本人在導(dǎo)師的指導(dǎo)下獨立完成的研究成果。除了文中特別加以標(biāo)注引用的內(nèi)容外,本論文不包含法律意義上已屬于他人的任何形式的研究成果,也不包含本人已用于其他學(xué)位申請的論文或成果。對本文的研究作出重要貢獻的個人和集體,均已在文中以明確方式表明。本人完全意識到本聲明的法律后果由本人承擔(dān)。作者簽名: 日期:學(xué)位論文版權(quán)使用授權(quán)書本學(xué)位論文作者完全了解學(xué)校有關(guān)保留、使用學(xué)位論文的規(guī)定,同意學(xué)校保留并向國家有關(guān)部門或機構(gòu)送交論文的復(fù)印件和電子版,允許論文被查閱和借閱。本人授權(quán)南昌航空大學(xué)科技學(xué)院可以將本論文的全部或部分內(nèi)容編入有關(guān)數(shù)據(jù)庫進行檢索,可以采用影印、縮印或掃描等復(fù)制手段保存和匯編本學(xué)位論文。作者簽名: 日期:導(dǎo)師簽名: 日期:Int J Adv Manuf Technol (2005) 25: 551–559DOI 10.1007/s00170-003-1843-3ORIGINAL ARTICLES.H. Masood · B. Abbas · E. Shayan · A. KaraAn investigation into design and manufacturing of mechanical conveyors systemsfor food processingReceived: 29 March 2003 / Accepted: 21 June 2003 / Published online: 23 June 2004? Springer-Verlag London Limited 2004Abstract This paper presents the results of a research investi-gation undertaken to develop methodologies and techniques thatwill reduce the cost and time of the design, manufacturing andassembly of mechanical conveyor systems used in the food andbeverage industry. The improved methodology for design andproduction of conveyor components is based on the minimisa-tion of materials, parts and costs, using the rules of design formanufacture and design for assembly. Results obtained on a testconveyor system verify the bene?ts of using the improved tech-niques. The overall material cost was reduced by 19% and theoverall assembly cost was reduced by 20% compared to conven-tional methods.Keywords Assembly · Cost reduction · Design · DFA · DFM ·Mechanical conveyor1 IntroductionConveyor systems used in the food and beverage industry arehighly automated custom made structures consisting of a largenumber of parts and designed to carry products such as foodcartons, drink bottles and cans in fast production and assemblylines. Most of the processing and packaging of food and drink in-volve continuous operations where cartons, bottles or cans are re-quired to move at a controlled speed for ?lling or assembly oper-ations. Their operations require highly ef?cient and reliable me-chanical conveyors, which range from overhead types to ?oor-mounted types of chain, roller or belt driven conveyor systems.In recent years, immense pressure from clients for low costbut ef?cient mechanical conveyor systems has pushed con-veyor manufacturers to review their current design and assemblymethods and look at an alternative means to manufacture moreeconomical and reliable conveyors for their clients. At present,S.H. Masood (u) · B. Abbas · E. Shayan · A. KaraIndustrial Research Institute Swinburne,Swinburne University of Technology,Hawthorn, Melbourne 3122, AustraliaE-mail: smasood@swin.edu.aumost material handling devices, both hardware and software, arehighly specialised, in?exible and costly to con?gure, install andmaintain [1]. Conveyors are ?xed in terms of their locations andthe conveyor belts according to their synchronised speeds, mak-ing any changeover of the conveyor system very dif?cult and ex-pensive. In today’s radically changing industrial markets, there isa need to implement a new manufacturing strategy, a new systemoperational concept and a new system control software and hard-ware development concept, that can be applied to the design ofa new generation of open, ?exible material handling systems [2].Ho and Ranky [3] proposed a new modular and recon?gurable2D and 3D conveyor system, which encompasses an open re-con?gurable software architecture based on the CIM-OSA (opensystem architecture) model. It is noted that the research in thearea of improvement of conveyor systems used in beverage in-dustry is very limited. Most of the published research is directedtowards improving the operations of conveyor systems and inte-gration of system to highly sophisticated software and hardware.This paper presents a research investigation aimed at im-proving the current techniques and practices used in the de-sign, manufacturing and assembly of ?oor mounted type chaindriven mechanical conveyors in order to reduce the manufactur-ing lead time and cost for such conveyors. Applying the con-cept of concurrent engineering and the principles of design formanufacturing and design for assembly [4, 5], several criticalconveyor parts were investigated for their functionality, materialsuitability, strength criterion, cost and ease of assembly in theoverall conveyor system. The critical parts were modi?ed andredesigned with new shape and geometry, and some with newmaterials. The improved design methods and the functionality ofnew conveyor parts were veri?ed and tested on a new test con-veyor system designed, manufactured and assembled using thenew improved parts.2 Design for manufacturing and assembly (DFMA)In recent years, research in the area of design for manufacturingand assembly has become very useful for industries that are con-552sidering improving their facilities and manufacturing methodol-ogy. However, there has not been enough work done in the areaof design for conveyor components, especially related to the is-sue of increasing numbers of drawing data and re-engineeringof the process of conveyor design based on traditional methods.·····Emphasise standardisationUse the simplest possible operationsUse operations of known capabilityMinimise setups and interventionsUndertake engineering changes in batchesA vast amount of papers have been published that have investi-gated issues related to DFMA and applied to various methodolo-gies to achieve results that proved economical, ef?cient and costeffective for the companies under investigation.The main classi?cations of DFMA knowledge can be iden-ti?ed as (1) General guidelines, (2) Company-speci?c best prac-tice or (3) Process and or resource-speci?c constraints. Generalguidelines refer to generally applicable rules-of-thumb, relat-ing to a manufacturing domain of which the designer shouldbe aware. The following list has been compiled for DFMguidelines [6].These design guidelines should be thought of as “optimalsuggestions”. They typically will result in a high-quality, low-cost, and manufacturable design. Occasionally compromisesmust be made, of course. In these cases, if a guideline goesagainst a marketing or performance requirement, the next bestalternative should be selected [7].Company-speci?c best practice refers to the in-house designrules a company develops, usually over a long period of time, andwhich the designer is expected to adhere to. These design rulesare identi?ed by the company as contributing to improved qualityand ef?ciency by recognising the overall relationships between·················Design for a minimum number of partsDevelop a modular designMinimise part variationsDesign parts to be multifunctionalDesign parts for multiuseDesign parts for ease of fabricationAvoid separate fastenersMaximise compliance: design for ease of assemblyMinimise handling: design for handling presentationEvaluate assembly methodsEliminate adjustmentsAvoid ?exible components: they are dif?cult to handleUse parts of known capabilityAllow for maximum intolerance of partsUse known and proven vendors and suppliersUse parts at derated values with no marginal overstressMinimise subassembliesparticular processes and design decisions. Companies use suchguidelines as part of the training given to designers of productsrequiring signi?cant amounts of manual assembly or mainte-nance. Note that most of the methodologies are good at eitherbeing quick and easy to start or being more formal and quanti-tative. For example, guidelines by Boothroyd and Dewhurst [8]on DFA are considered as being quantitative and systematic.Whereas the DFM guidelines, which are merely rules of thumbderived from experienced professionals, are more qualitative andless formal [9].3 Conventional conveyor system designDesign and manufacturing of conveyor systems is a very com-plex and time-consuming process. As every conveyor system isa custom-made product, each project varies from every otherproject in terms of size, product and layout. The system designFig. 1. Layout of conveyor sys-tem for labelling plasic bottles553is based on client requirements and product speci?cations. More-over, the system layout has to ?t in the space provided by thecompany. The process of designing a layout for a conveyor sys-tem involve revisions and could take from days to months or insome instances years. One with the minimum cost and maximumclient suitability is most likely to get approval.Figure 1 shows a schematic layout of a typical conveyorsystem installed in a production line used for labelling ofplastic bottles. Different sections of the conveyor system areidenti?ed by speci?c technical names, which are commonlyused in similar industrial application. The “singlizer” sec-tion enables the product to form into one lane from multiplelanes. The “slowdown table” reduces the speed of productonce it exits from ?ller, labeller, etc. The “mass ?ow” sec-tion is used to keep up with high-speed process, e.g., ?ller,labeller, etc. The “transfer table” transfers the direction of prod-uct ?ow. The purpose of these different conveyor sections isthus to control the product ?ow through different processingmachines.A typical mechanical conveyor system used in food and bev-erage applications consists of over two hundred mechanical andelectrical parts depending on the size of the system. Some ofthe common but essential components that could be standard-ised and accumulated into families of the conveyor system areside frames, spacer bars, end plates, cover plates, inside bendplates, outside bend plates, bend tracks and shafts (drive, tail andslave). The size and quantity of these parts vary according to thelength of conveyor sections and number of tracks correspond-ing to the width and types of chains required. The problems andshortcomings in the current design, manufacturing and assemblyof mechanical conveyors are varied, but include:4 Areas of improvementIn order to identify the areas of cost reduction in material andlabour, a cost analysis of all main conveyor parts was conductedto estimate the percentage of cost of each part in relation to thetotal cost of all such parts. The purpose of this analysis was toidentify the critical parts, which are mainly responsible for in-creasing the cost of the conveyor and thereby investigate meansfor reducing the cost of such parts.Table 1 shows the cost analysis of a 50-section conveyor sys-tem. The analysis reveals that 12 out of 15 parts constitute 79%of the total material cost of the conveyor system, where furtherimprovements in design to reduce the cost is possible. Out ofthese, seven parts were identi?ed as critical parts (shown by anasterisk in Table 1) constituting maximum number of compo-nents in quantity and comprising over 71% of overall materialcost. Among these, three components (leg set, side frame andsupport channel) were found to account for 50% of the totalconveyor material cost. A detailed analysis of each of these 12parts was carried out considering the principles of concurrent en-gineering, design for manufacture and design for assembly, anda new improved design was developed for each case [10]. De-tails of design improvement of some selected major componentare presented below.5 Redesign of leg set assemblyIn a conveyor system, the legs are mounted on the side frame tokeep the entire conveyor system off the ?oor. The existing designof conveyor legs work, but they are costly to manufacture, they····Over design of some partsHigh cost of some componentsLong hours involved in assembly/maintenanceUse of non-standard partshave stability problems, and cause delays in deliveries. The delayis usually caused by some of the parts not arriving from over-seas suppliers on time. The most critical speci?cations requiredfor the conveyor legs are:Table 1. Conveyor critical parts based on parts cost analysisProduct descriptionLeg set?Side frame?Support channel?Bend tracksRt. roller shaft?Tail shaftSpacer bar?Support wear strip?Support side wear strip?End plateCover plateBend platesTorque arm bracketSlot coverInside bend plateQty68804008139391354001323939818978Material usedPlastic leg + SS tube2.5 mm SSC channel SSPlastic20 dia. SS shaft35 dia. Stainless steel50X50X6 SS40 × 10 mm plasticPlastic2.5 mm/SS1.6 mm S/S2.5 mm/SS6 mm S/S plateStainless steel2.5 mm/SSCost (%)20.2216.0715.0014.366.706.275.435.363.011.881.571.291.210.970.66Improvement possible (Yes/No)YesYesYesNoYesNoYesYesYesYesNoYesYesYesYesTotal?Critical parts100.00554····Strength to carry conveyor loadStabilityEase of assemblyEase of ?exibility (for adjusting height)1 and part 3 in Fig. 2) was not rigid enough. The connectionsfor these parts are only a single 6 mm bolt. At times, when theconveyor system was carrying full product loads, it was observedthat the conveyor legs were unstable and caused mechanical vi-bration. One of the main reasons for this was due to a single boltFigure 2 indicates all the parts for the existing design ofthe conveyor leg. The indicated numbers are the part numbersdescribed in Table 2, which also shows a breakdown of cost an-alysis complete with the labour time required to assemble a com-plete set of legs. The existing leg setup consists of plastic legbrackets ordered from overseas, stainless steel leg tubes, whichare cut into speci?ed sizes, leg tube plastic adjustments, whichare clipped onto the leg tube at the bottom as shown in Fig. 2.Lugs, which are cut in square sizes, drilled and welded to the legtube to bolt the angle cross bracing and backing plate to supportleg brackets bolts. The # of parts in Table 2 signi?es the numberof components in each part number and the quantity is the con-sumption of each part in the leg design. Companies have usedthis design for many years but one of the common complaintsreported by the clients was of the instability of legs.From an initial investigation, it became clear that the connec-tion between the stainless steel tube and plastic legs bracket (partFig. 2. Existing leg design assembly with partnames shown in Table 1Table 2. Cost analysis for old leg design assemblyconnection at each end of the lugs in part 3 and part 7. The sta-bility of the conveyor is considered critical matter and requiresrecti?cation immediately to satisfy customer expectations.Considering the problems of the existing conveyor leg de-sign and the client’s preferences, a new design for the conveyorleg was developed. Generally the stability and the strength ofthe legs were considered as the primary criteria for improve-ment in the new design proposal but other considerations werethe simplicity of design, minimisation of overseas parts and easeof assembly at the point of commissioning. Figure 3 shows, thenew design of the conveyor’s leg assembly, and Table 3 gives adescription and the cost of each part.Figure 3 shows that the new design consists of only ?ve mainparts for the conveyor’s leg compared to eight main parts in theold design. In the old design, the plastic leg bracket, the legtube plastic adjustment and the leg tube were the most expensiveitems accounting for 72% of the cost of leg assembly. In the newPart no.15, 647238Part descriptionPlastic leg bracketLeg tube plastic adjustmentLugAngle cross bracingBacking plateLeg tubeBolts# of parts2421226Qty2221226Cost$ 30.00$ 28.00$ 4.00$ 5.00$ 4.00$ 25.00$ 3.00SourceOverseasOverseasIn-houseIn-houseIn-houseIn-houseIn-houseTotal assembly cost (welding) $ 15.00 In-houseTotal 19 17 $ 114.00555Fig. 3. New design for leg assembly with partnames in Table 3Table 3. Cost analysis for new design leg assemblyPart no.13452Part descriptionStainless steel angle (50 × 50 × 3 mm)Leg plastic adjustmentCross brassingBoltsBacking plate# of parts22182Qty22142Cost$ 24.00$ 10.00$ 7.00$ 4.00$ 4.00SourceIn-houseOverseasIn-houseIn-houseIn-houseTotal assembly cost $ 10.00 In-houseTotaldesign, those parts have been replaced by a stainless steel angleand a new plastic leg adjustment reducing the cost of leg assem-bly by almost 50%. Thus the total numbers of parts in the leghave been reduced from 19 to 15 and the total cost per leg setup15····11Size of side frame (depth)Strength of the materialEase for assemblyEase for manufacturing$ 59.00has been reduced by $ 55 in the new design.The new conveyor leg design, when tested, was found to bemore secure and stable than the old design. The elimination ofpart number 1 and 5 from old conveyor design has made the newdesign more stable and rigid. In addition, the width of the crossbracing has also been increased with two bolts mount instead ofone in old design. This has provided the entire conveyor leg setupan additional strength.6 Redesign of the side framesThe side frame is the primary support of a conveyor systemthat provides physical strength to conveyors and almost all theparts are mounted on it. The side frame is also expected to havea rigid strength to provide support to all the loads carried onthe conveyor. It also accommodates all the associated conveyorcomponents for the assembly. The critical considerations of sideframe design are:Figure 4 shows the side frame dimension and parameters.The side frame used in existing design appears to be of rea-sonable depth in size (dimension H in Fig. 4). From the initialinvestigation, it was found that the distance between spacer barholes and return shaft (dimensions G and F in Fig. 4) could bereduced, as there was some unnecessary gap between those twocomponents. The important point to check before rede?ning thedesign parameters was to make sure that after bringing those twocloser, the return chains would not catch the spacer bar while theconveyor is running. The model of the new side frame design wasdrawn on CAD to ensure all the speci?cations are sound and theparts are placed in the position to check the clearances and the?ts. Using the principle of design for manufacturing the new sideframe design was made symmetrical so that it applies to all typesof side frames. This change is expected to reduce the size of sideframe signi?cantly for all sizes of chains.Table 4 shows a comparison of dimensions in the old designand the new design of side frames for the same chain type. It556Fig. 4. Side frame dimensionsTable 4. New and old side frame dimension parametersOld designChain type3.25 LF/SS STR/LBP/MAGA31B92C71D196E65F105G211H241I136J58K85L196TAB 22 83 62 187 56 96 202 232 127New designChain type3.25 LF/SS STR/LBP/MAG/TABA31B100C73D173E67F107G167H199I92J58K85L152is noted that the overall size (depth) of the conveyor has beenreduced from 241 mm to 199 mm (dimension H), which givesa saving of 42 mm of stainless steel on every side frame manu-factured. Thus, from a stainless steel sheet 1500 × 3000 mm, theold design parameters allowed only six 3 m long side frames butwith the new design parameter now it was possible to produceseven side frames of 3 m long from the same sheet size.The amount of material used for side frames was also re-viewed for further investigation. It is estimated that about 55%of the total cost of the conveyor system is spent on materials.The current material used for side frames is 2.5 mm thick stain-less steel food grade 304. Currently, there are other materialsavailable in the market with alternative thickness that could beconsidered as an option. For this, a de?ection analysis has beenconducted to estimate if there was any other type of material suit-able to replace the existing material so that it does not fail itsstrength criteria.6.1 De?ection analysis for side framesFigure 5 shows the experimental setup to determine the de?ec-tion of new side frame in X and Y direction under differentloading conditions. With the new design parameters a set ofside frames were manufactured to investigate the de?ection on1.6 mm thick stainless steel side frames. A section of side framebolted with spacer bar and return shaft was assembled for test-ing with the experiment. The results for de?ection were obtainedby applying variable loads on a section of the side frame viaa hydraulic press. As shown in Fig. 5, the de?ection gaugesare placed on vertical (Y ) and horizontal (X ) axes to measureany reading observed on the side frames. The loads are appliedon side frame via the hydraulic press in downward direction.The side frames are supported by stands from the same positionwhere the legs are mounted on the side frames.Three sets of experiments are conducted on four, six andei
收藏