-i-摘 要拉絲機(jī)也被叫做拔絲機(jī)、拉線機(jī),在工業(yè)應(yīng)用中使用很廣泛的機(jī)械設(shè)備,廣泛應(yīng)用于機(jī)械制造,五金加工,石油化工,塑料,竹木制品,電線電纜等行業(yè),拉絲機(jī)屬于標(biāo)準(zhǔn)件等金屬制品生產(chǎn)預(yù)加工設(shè)備,目的是為了把由鋼材生產(chǎn)廠家求生產(chǎn)運(yùn)輸至標(biāo)準(zhǔn)件等金屬制品生產(chǎn)企業(yè)的線材或棒材經(jīng)過拉絲機(jī)的拉拔處理,使線材或棒材的直徑、圓度、內(nèi)部金相結(jié)構(gòu)、表面光潔度和矯直度都達(dá)到標(biāo)準(zhǔn)件等金屬制品生產(chǎn)需要的原料處理要求.本產(chǎn)品的主要由電動(dòng)機(jī)帶動(dòng)蝸桿,再由蝸桿帶動(dòng)渦輪,最后滾動(dòng)卷筒,通過拉絲模盒,進(jìn)行拉拔.關(guān)鍵詞:拉絲 減速器 卷速-i--ii-AbstractWire drawing machine is also known as wire drawing machine,drawing machine,In industrial applications use a wide range of machinery and equipment,Widely used in machinery manufacturing, metal processing,petrochemical, plastics, wood products, such as wire and cable industry, wire drawing machine belongs to the pre processing equipment for the production of standard parts and other metal products, the purpose is to transport to production by the steel manufacturer to standard parts and other metal products production enterprise of wire or rod through the wire drawing machine drawing processing, make the diameter of wire or rod, metallographic structure, surface roughness and roundness, internal straightening degrees are required for standard parts and other metal products productionThis product is mainly composed of motor drive the worm, the worm drive the turbines, the rolling drum, through the wire-drawing die box, carries on the drawing.Key words: wiredrawing reducer roll spee-ii--iii-目 錄第一章 緒論 11.1 引言 11.2 課題研究的目的和意義 11.2.1 課題的來源及研究 .11.2.2 國內(nèi)外 LD-350 帶懸臂拉絲機(jī)的發(fā)展現(xiàn)狀 21.3 課題研究?jī)?nèi)容與思路 31.3.1 課題的研究?jī)?nèi)容 .31.3.2 課題的研究思路 .31.4 T9 碳素鋼絲的應(yīng)用 31.5 本章小結(jié) .3第二章 設(shè)計(jì)方案的確定 .52.1 拉絲機(jī)的拉過程分析 52.2 傳動(dòng)布局設(shè)計(jì) 52.3 電動(dòng)機(jī)的選擇 52.4 拉拔模 62.4.1 拉拔模材料的選擇 .62.4.2 拉拔模的外形 .72.4.3 拉絲模使用時(shí)應(yīng)該注意的一些問題 .7第三章 設(shè)計(jì)計(jì)算與校核 93.1 拉拔模參數(shù)計(jì)算 93.2 傳動(dòng)比的分配與初步設(shè)計(jì) .10-iii-3.3 帶傳動(dòng)的設(shè)計(jì)計(jì)算 .113.4 渦輪蝸桿的選擇 .123.5 蝸桿傳動(dòng)的設(shè)計(jì)計(jì)算 .123.6 蝸桿軸的設(shè)計(jì)計(jì)算 .183.7 渦輪軸的設(shè)計(jì) .193.8 蝸桿軸的設(shè)計(jì)與校核 .203.9 軸承壽命校核 .293.10 其他部件的校核計(jì)算 31第四章 卷筒尺寸設(shè)計(jì) .33第五章 蝸桿減速器箱體 .355.1 減速器尺寸設(shè)計(jì) .355.2 減速箱體的附件說明 .36第六章 密封說明 .37第七章 設(shè)計(jì)小結(jié) .38第八章 致謝 .39第九章 參考文獻(xiàn) 40- 1 -第一章 緒論1.1 引言目前中國已經(jīng)成為全球線材制品大國。線材行業(yè)中廣泛使用的一種是拉絲機(jī)。拉絲機(jī)的內(nèi)孔由圓柱面與圓錐面組成。圓錐面為對(duì)線材(工件)的壓縮區(qū),圓柱面為拉絲機(jī)的定徑區(qū),其直徑大小與線材尺寸相對(duì)應(yīng)。拉絲的質(zhì)量直接影響線材的形狀、尺寸、表面粗糙度及使用壽命。我國目前采用的拉絲機(jī)工藝是五十年代初從蘇聯(lián)引進(jìn)的針磨工藝。這種工藝的可靠性不高,且生產(chǎn)效率較低。1.2 課題研究的目的和意義1.2.1 課題的來源及研究目前中國已經(jīng)成為全球線材制品大國。但是從經(jīng)濟(jì)效益看,差距卻很大。全行業(yè)各類產(chǎn)品基本生存在上下游企業(yè)的夾縫中,長(zhǎng)期以來在微利和虧損的邊緣徘徊。這些必須引起全行業(yè)的高度關(guān)注。我國線材制品行業(yè)普遍面臨成本壓力,其根本出路還是加強(qiáng)科技進(jìn)步和技術(shù)創(chuàng)新,增加高附加值產(chǎn)品的比重,同時(shí)進(jìn)一步加強(qiáng)企業(yè)管理,節(jié)約資源,提高競(jìng)爭(zhēng)力。預(yù)計(jì) 2010 年,國內(nèi)中高碳線材制品的消費(fèi)量將增長(zhǎng)至 865 萬噸(未包括凈出口量)?!笆晃濉逼陂g,我國中高碳線材制品消費(fèi)量將持續(xù)增長(zhǎng),但增長(zhǎng)率將有所下降。因?yàn)?,中高碳線材(硬線)的制造成本與普通低碳鋼線材的成本差距逐漸縮小,為進(jìn)一步發(fā)展中高碳線材制品生產(chǎn)提供了條件。另外,隨著中高碳線材制品生產(chǎn)成本的降低,特別是建筑行業(yè)用優(yōu)質(zhì)高強(qiáng)度鋼絲及制品的價(jià)格與普通低碳鋼絲的差距逐漸縮小,為中高碳線材制品在建筑行業(yè)推廣創(chuàng)造了條件,這將帶動(dòng)中高碳制品消費(fèi)總量的持續(xù)增長(zhǎng)。線材行業(yè)的不斷發(fā)展對(duì)拉絲機(jī)提出了越來越多的要求,低成本高質(zhì)量就要求拉絲機(jī)的使用壽命要更長(zhǎng),內(nèi)孔精度要更高,總之就是要提高拉絲機(jī)的質(zhì)量。拉絲機(jī)的內(nèi)孔由圓柱面與圓錐面組成。圓錐面為對(duì)線材(工件)的壓縮區(qū),圓柱面為拉絲機(jī)的定徑區(qū)(拉區(qū)),其直徑大小與線材尺寸相對(duì)應(yīng)。拉絲機(jī)的質(zhì)量直接辯證唯物線材的形狀、尺寸、表面粗糙度及使用壽命。我國目前采用的拉絲機(jī)模孔工藝是五十年代初從蘇聯(lián)引進(jìn)的針磨工藝。它的工作原理是,旋轉(zhuǎn),針狀磨頭在磨孔內(nèi)做微移動(dòng)或擺動(dòng),以達(dá)到加工??椎哪康摹_@種工藝的可靠性不高,且生產(chǎn)效率較低。針狀磨頭設(shè)計(jì)成錐狀是為了使其在模也內(nèi)穿進(jìn)方便,同時(shí)在磨削過程中產(chǎn)生徑向分力以提高磨削效果。但因此也帶來很多弊- 2 -端。首先,針狀磨頭的錐度使加工出來的??滓簿哂绣F度,使用有錐度的??桌z時(shí),起定徑作用的僅僅是錐狀??椎男《?。定徑區(qū)小,因而在拉作業(yè)時(shí)的接觸面積小,那么- 3 -由于拉絲機(jī)工作過程中作用在磨擦表面微觀體積上周期性的接觸載荷或交變應(yīng)力的存在,極易使表面或次表面形成裂紋。由此造成??讋×夷p,線材拉質(zhì)量差。其次,針狀磨頭是手工修制的,磨頭形狀極難呈現(xiàn)理想圓錐形。因此,在過程中,由于針磨頭呈錐面,徑向分力存在,且?guī)缀醪豢赡芡耆胶?,由此而產(chǎn)生的偏心力使懸置的磨頭呈現(xiàn)撓曲,從而加工出偏心的??住A硪环矫?,由于模頭的不規(guī)則,在磨削過程中出現(xiàn)高頻交變應(yīng)力,以致產(chǎn)生振動(dòng)。對(duì)于一個(gè)“ 懸臂梁”結(jié)構(gòu),在加工過程中存在的振動(dòng),將對(duì)整個(gè)結(jié)構(gòu)的壽命有所影響。從考核產(chǎn)品或設(shè)備可靠性的角度一看,主要指標(biāo)是壽命和性能。顯而易見,針磨工藝是比較落后的。所以就要求改進(jìn)國內(nèi)的拉絲機(jī)拉技術(shù),本課題就是在消化、吸收國外先進(jìn)技術(shù)的基礎(chǔ)上,研制出高速線拉絲機(jī)。1.2.2 國內(nèi)外 LD-350 帶懸臂拉絲機(jī)的發(fā)展現(xiàn)狀研磨工藝是拉絲模成型的主要工序。它分為三個(gè)步驟,粗磨、細(xì)磨(精磨)、拋光。加工方法基本相似,但使用磨料不一。據(jù)中國機(jī)床商業(yè)網(wǎng)報(bào)道,隨著科學(xué)技術(shù)的不斷發(fā)展,各種模具的加工工藝要求越來越高。提高模具拋光的速度和質(zhì)量使我國模具制造工藝達(dá)到世界先進(jìn)水平,已成為刻不容緩的重要課題。目前,國外拉絲模拋光效果最好的是日本、美國,而意大利、瑞典、丹麥等國拋光質(zhì)量次之。機(jī)械式拉絲模拋光機(jī)是實(shí)用新型涉及一種拋光機(jī)。它包括機(jī)架、驅(qū)動(dòng)電機(jī)、傳動(dòng)機(jī)構(gòu)、直線往復(fù)運(yùn)動(dòng)的導(dǎo)桿、設(shè)置在導(dǎo)桿上的支架、拋光帶;傳動(dòng)機(jī)構(gòu)包括連接在電機(jī)軸上的偏心輪、鉸接在偏心輪偏心軸上的曲柄;曲柄的另一端與導(dǎo)桿的一端鉸連接;導(dǎo)桿通過一對(duì)同軸設(shè)置的導(dǎo)套連接在機(jī)架上;在導(dǎo)桿中部橫向連接有支架,拋光帶穿越拉絲模??走B接在支架上。本實(shí)用新型用機(jī)械傳動(dòng)代替手工操作,通過曲柄連桿機(jī)構(gòu)將電機(jī)的旋轉(zhuǎn)運(yùn)動(dòng)轉(zhuǎn)化為導(dǎo)桿的直線往復(fù)運(yùn)動(dòng);通過連接在導(dǎo)桿上相對(duì)于模孔做直線往復(fù)運(yùn)動(dòng)的拋光帶,實(shí)現(xiàn)了對(duì)??椎膾伖饧庸ぁ4蟠蠊?jié)約了加工時(shí)間、降低了勞動(dòng)強(qiáng)度、提高了拋光質(zhì)量、節(jié)約了研磨材料。我國拉絲模制造工業(yè)從八十年代起,發(fā)展較快,但總的來說與國外還有不小的差距,我國制模工業(yè)還比較落后,加強(qiáng)制模管理,提高拉絲模質(zhì)量水平,推動(dòng)制模工藝技術(shù)的進(jìn)步,是當(dāng)前的重要課題。本課題拉絲模拋光機(jī)設(shè)計(jì)就是著眼于用新型涉及一種對(duì)拉絲模具進(jìn)行拋光加工的拉絲模具高速拋光機(jī)其特點(diǎn)是拉絲模具放置定位腔是一個(gè)由旋轉(zhuǎn)端蓋和旋轉(zhuǎn)體構(gòu)成的圓錐形空腔,改進(jìn)后的拉絲模具定位腔具有通用性,電機(jī)激磁控制電路設(shè)置了激磁可調(diào)開關(guān),在定- 4 -時(shí)控制線路和振動(dòng)、旋轉(zhuǎn)速度控制線路之間設(shè)置了一個(gè)啟動(dòng)保護(hù)電路,經(jīng)過如此改進(jìn)后的拉絲模具高速線拋光機(jī)往復(fù)振動(dòng)從而實(shí)現(xiàn)拋光,改造簡(jiǎn)單,安全可靠。且大大的提高了勞動(dòng)生產(chǎn)力。制訂與國外等同的拉絲模產(chǎn)品標(biāo)準(zhǔn),所以必須搞專業(yè)化管理,目前國內(nèi)有必要成立專門的機(jī)構(gòu),以進(jìn)一步加強(qiáng)拉絲模拋光機(jī)制造管理。機(jī)械式拉絲模拋光機(jī)是自己制模,并且同時(shí)實(shí)現(xiàn)拋光,太大地減少了拉絲廠輔助部門的人員和資金占用,提高了經(jīng)濟(jì)效益。1.3 課題研究?jī)?nèi)容與思路1.3.1 課題的研究?jī)?nèi)容(1)完成 LD-350 帶懸臂單頭立式拉絲機(jī)設(shè)計(jì)總傳動(dòng)方案的設(shè)計(jì)、選擇及確定(2)完成 LD-350 帶懸臂單頭立式拉絲機(jī)設(shè)計(jì)整機(jī)設(shè)計(jì)、計(jì)算及校核(3)完成傳動(dòng)零件、卷筒、拉絲模盒等重要零件的設(shè)計(jì)、計(jì)算及校核(4)完成 LD-350 帶懸臂單頭立式拉絲機(jī)總裝配圖(零號(hào)圖)及非標(biāo)準(zhǔn)零件圖若干張(5)完成設(shè)計(jì)說明書一份1.3.2 課題的研究思路(1)通過查資料、結(jié)合傳統(tǒng)的生產(chǎn)工藝的基礎(chǔ)和機(jī)械線材行業(yè)的發(fā)展需要,設(shè)計(jì) LD-350 帶懸臂拉絲機(jī)旋轉(zhuǎn)機(jī)構(gòu)及總傳動(dòng)方案。(2)采用 Pro/E 軟件初步設(shè)計(jì)出 LD-350 帶懸臂拉絲機(jī)的主體結(jié)構(gòu),以及各個(gè)附屬機(jī)構(gòu)。(3)根據(jù)零部件的設(shè)計(jì)計(jì)算,確定其結(jié)構(gòu)并選定各零件的材料。(4)繪制主體結(jié)構(gòu)的三維圖紙和工程圖紙,關(guān)鍵零件的三維圖紙、工圖紙和有限元分析。(5)通過計(jì)算完成分析各個(gè)動(dòng)作的運(yùn)動(dòng)的方式。(6)根據(jù)要求和設(shè)計(jì)過程,編寫設(shè)計(jì)說明書。1.4 T9 碳素鋼絲的應(yīng)用用以制造彈簧或類似彈簧性能零件的鋼類。具有高的彈性極限﹑疲勞極- 5 -限(尤其是缺口疲勞極限)以及一定的沖擊韌性和塑性﹐主要在沖擊﹑震動(dòng)等動(dòng)載荷或長(zhǎng)期周期性交變應(yīng)力的條件下使用。所以在各種狀態(tài)下工作的彈簧都要有良好的表面質(zhì)量和較高的抗疲勞性能。在工藝性能上﹐需經(jīng)淬火﹑回火的彈簧鋼﹐應(yīng)具有一定的淬透性﹐不易脫碳﹐過熱敏感性低和塑性較高﹐在熱狀態(tài)下易于成形。制造小尺寸彈簧用的鋼絲要有均勻的硬度和一定的塑性。1.5 本章小結(jié)結(jié)合三維實(shí)體建模技術(shù)、二維建模技術(shù)、優(yōu)化設(shè)計(jì)技術(shù)等技術(shù)對(duì)原有的LD-350 帶懸臂拉絲機(jī)進(jìn)行整體反求創(chuàng)新改造設(shè)計(jì),用液壓系統(tǒng)來代替連桿機(jī)構(gòu)對(duì)拉絲往復(fù)運(yùn)動(dòng)進(jìn)行控制,同時(shí),對(duì)操作人員進(jìn)行必要的培訓(xùn)可以加速生產(chǎn)效率和質(zhì)量。應(yīng)用以上的分析我們?cè)O(shè)計(jì)的 LD-350 帶懸臂拉絲機(jī)一定能滿足生產(chǎn)者的需求,在激烈的市場(chǎng)競(jìng)爭(zhēng)中站穩(wěn)腳步,獲得更大的利潤(rùn)。- 6 -第二章 設(shè)計(jì)方案的確定2.1 拉絲機(jī)的拉過程分析根據(jù)本課題——LD-350 帶懸臂拉絲機(jī)的的要求及所要實(shí)現(xiàn)的加工功能,即對(duì)金屬坯料施加以拉力,使之通過??滓垣@得與??捉饷苣浅叽?、形狀相同的制品的塑型加工方法。從拉過程可以看出,LD-350 帶懸臂拉絲機(jī)的主要工作部件是拉絲的往復(fù)移動(dòng)和拉絲機(jī)的回轉(zhuǎn)運(yùn)動(dòng),拉絲和拉絲機(jī)的相對(duì)運(yùn)動(dòng)產(chǎn)生磨擦,從而從??锥◤絽^(qū)進(jìn)行拉加工。2.2 傳動(dòng)布局設(shè)計(jì)方案:一采用液壓控制系統(tǒng)來控制拉絲的往復(fù)運(yùn)動(dòng)。液壓傳動(dòng)控制是工業(yè)中經(jīng)常用到的一種控制方式,它采用液壓完成傳遞能量的過程。因?yàn)橐簤簜鲃?dòng)控制方式的靈活性和便捷性,液壓控制在工業(yè)上受到廣泛的重視。液壓傳動(dòng)是研究以有壓流體為能源介質(zhì),來實(shí)現(xiàn)各種機(jī)械和自動(dòng)控制的學(xué)科。液壓傳動(dòng)利用這種元件來組成所需要的各種控制回路,再由若干回路有機(jī)組合成為完一定控制功能的傳動(dòng)系統(tǒng)來完成能量的傳遞、轉(zhuǎn)換和控制。液壓缸的活塞桿在液壓油的推動(dòng)下上下移動(dòng),而活塞桿通過絲夾頭與拉絲連接,并帶動(dòng)拉絲作往復(fù)運(yùn)動(dòng)進(jìn)而對(duì)拉絲機(jī)內(nèi)孔進(jìn)行拉。這種控制系統(tǒng)既保證了拉絲機(jī)內(nèi)孔的加工精度,同時(shí)結(jié)構(gòu)簡(jiǎn)單,操作方便,對(duì)操作人員的專業(yè)要求不如數(shù)控系統(tǒng)的高,而適用范圍又比較廣。所以,綜上所述,該 LD-350 帶懸臂拉- 7 -絲機(jī)拉絲的往復(fù)運(yùn)動(dòng)采用液壓系統(tǒng)來控制。方案二:傳動(dòng)采用兩級(jí)傳動(dòng),先用一級(jí)帶傳動(dòng),把電機(jī)扭矩傳給圓柱,然后采用圓柱齒輪減速器將扭矩傳給卷筒,帶動(dòng)鋼絲通過拉拔模實(shí)現(xiàn)拉拔。傳動(dòng)示意圖如下所示。方案比較三:傳動(dòng)采用兩級(jí)傳動(dòng),先用一級(jí)帶傳動(dòng),把電機(jī)扭矩傳給蝸桿,然后采用蝸輪蝸桿減速器將扭矩傳給卷筒,帶動(dòng)鋼絲通過拉拔模實(shí)現(xiàn)拉拔。傳動(dòng)示意圖如下所示。方案三傳動(dòng)更加平穩(wěn),且更利于分配傳動(dòng)比,所以方案三更好。2.3 電動(dòng)機(jī)的選擇預(yù)選卷筒轉(zhuǎn)速 110/min,查表 2.1,選取電機(jī) Y132S1-2 電動(dòng)機(jī)。查得該電機(jī)的滿載轉(zhuǎn)速為 2900r/min。表 2.1 部分型號(hào)電動(dòng)機(jī)主要參數(shù)型 號(hào) 功 率( KW)電 流 (A)轉(zhuǎn) 速 r/min鐵芯長(zhǎng) 度定 子外 徑定子 內(nèi) 徑輸 出軸 徑Y(jié)132S1-2 5.5 30 1200 180 210 148Y132S-8 2.2 5.8 710 110 210 148Y132M-8 3.0 7.7 710 180 210 148Y160M1-2 11 22 710 125 260 150 Ф42Y160M2-2 15 29 2930 155 260 150 Ф42Y160L-2 18.5 36 2930 155 260 150 Ф42- 8 -Y160M-4 11 23 1460 195 260 170 Ф42Y160L-4 15 30 1460 195 260 170 Ф42Y160M-6 7.5 17 970 145 260 180 Ф42Y160L-6 11 25 970 195 260 180 Ф422.4 拉拔模2.4.1 拉拔模材料的選擇目前,拉絲模的材料可以分為幾類,分別為合金鋼拉絲模、硬質(zhì)合金拉絲模、天然金剛石拉絲模、人造聚晶金剛石拉絲模、涂層拉絲模和陶瓷拉絲模。根據(jù)拉絲模材料分類,其加工線材的種類和直徑以及拉絲模的加工方法是有所區(qū)別的。 1.合金鋼拉絲模 合金鋼是通常用的工具鋼,其硬度和耐磨性是幾種拉絲模中最低的,但是因其材料價(jià)格低,加工方便,所以在線材的粗加工過程中還有所使用。 2.硬質(zhì)合金拉絲模 絕大多數(shù)的硬質(zhì)合金拉絲模通常屬于鎢類和金。這些合金是由碳化鎢和鈷等組成。碳化鎢是整個(gè)合金的“骨架”,主要起堅(jiān)硬耐磨作用,鈷是粘結(jié)金屬,是合金韌性的來源。硬質(zhì)合金模具有以下特性:(1)耐磨性高。(2)拋光性好。(3)粘附性小(4)摩擦系數(shù)小,降低能量消耗(5)抗蝕性高。這些特性使得拉絲模對(duì)潤(rùn)滑劑具有廣泛適應(yīng)性。 3.天然金剛石拉絲模 天然金剛石拉絲模脆性大,加工比較困難,一般用于制造直徑 1.2 毫米以下的拉絲模。它具有各向異性的特點(diǎn),拉拔過程中當(dāng)整個(gè)孔的周圍都處在工作狀態(tài)下時(shí),天然金剛石在孔的某一位置將發(fā)生擇優(yōu)磨損。因其價(jià)格較貴,所以這種拉絲模并不是我們最終所尋求的即經(jīng)濟(jì)又實(shí)用的材料。 - 9 -4.人造聚晶金剛石拉絲模 這種拉絲模是用人造金剛石單晶體、加上少量硅、鈦等結(jié)合劑,在高溫高壓的條件下聚合而成。用聚晶金剛石制成的拉絲模硬度高、耐磨性好,孔壁磨損均勻,抗沖擊能力強(qiáng),拉拔效率高。目前,聚晶金剛石拉絲模在拉拔行業(yè)中應(yīng)用廣泛。 5.涂層拉絲模 這種拉絲模是新近發(fā)展起來的一項(xiàng)新技術(shù),其主要方法就是在硬質(zhì)合金拉絲模上涂層金剛石薄膜。它具有單晶體金剛石的光澤度、耐溫性而且具有聚晶金剛石的耐磨性等優(yōu)點(diǎn)。它的使用將為拉絲模行業(yè)帶來新的活力。 6.陶瓷拉絲模 隨著拉拔行業(yè)的不斷發(fā)展,人們對(duì)拉絲模的質(zhì)量要求也在不斷提高。即要從經(jīng)濟(jì)的角度考慮選材,又要從實(shí)際應(yīng)用的效率上加以考慮。而陶瓷材料因?yàn)槠淞己玫奈锢頇C(jī)械性能,逐漸成為良好的拉絲模材料。 陶瓷拉絲模在拉絲過程中不與金屬線材發(fā)生粘附作用,有利于提高金屬材料表面性能。因陶瓷材料具有硬度高、耐磨性好、化學(xué)穩(wěn)定性強(qiáng)、高溫力學(xué)性能優(yōu)良和不易與金屬發(fā)生粘結(jié)等特點(diǎn),所以他的各項(xiàng)性能都優(yōu)于其它拉絲模。各種拉絲模材料的性能對(duì)比 綜上比較選擇陶瓷拉絲模模具。2.4.2 拉拔模的外形拉絲模的主要工作區(qū)域是內(nèi)孔,內(nèi)孔結(jié)構(gòu)按工作性質(zhì)可分為入口區(qū)、潤(rùn)滑區(qū)、工作區(qū)、定徑區(qū)、出口區(qū)五個(gè)區(qū)間以及遵循“圓滑過渡”理論,即拉絲??變?nèi)各區(qū)交界處必須為較小的圓角過渡。被拉拔線材從入口處進(jìn)入拉絲模,在拉拔力的作用下通過拉絲模,并且在拉絲模工作區(qū)的錐面上發(fā)生劇烈摩擦,從出口處拉出,得到較小的線材.2.4.3 拉絲模使用時(shí)應(yīng)該注意的一些問題良好而有效的拉絲模能給我們帶來意想不到的效果,但是同樣的我們?cè)谑褂玫倪^程中也不可避免的要注意某些問題:1.拉絲模更換模具、穿模操作復(fù)雜,增加了操作的難度;- 10 -2.拉絲模制造精度要求高,制造困難,不同直徑的線材還需要配備不同的拉絲模,制造模具的成本高;3.潤(rùn)滑劑的質(zhì)量高球比較高。潤(rùn)滑劑質(zhì)量差的話,在較大壓力和高溫的潤(rùn)滑腔內(nèi),潤(rùn)滑劑往往擠壓的很密實(shí)、堅(jiān)硬,對(duì)鋼絲的擠壓力很大,拉拔細(xì)絲時(shí)足以是鋼絲產(chǎn)生“縮頸”的現(xiàn)象,造成通盤鋼絲直徑不均勻,甚至發(fā)生縮短的可能性比較大;4.對(duì)于鋼絲需要再鍍鋅、鍍銅等要求的時(shí)候,不宜采用拉絲模。組合模拉絲時(shí)鋼絲表面潤(rùn)滑劑殘留量比較多,給電鍍前的清洗帶來困難,影響鍍層的實(shí)際質(zhì)量;5.拉絲模與普通拉絲模的有效匹配。評(píng)價(jià)拉絲模的質(zhì)量,除了模芯材料、??字行呐c模具出口端垂直度等因素,??椎目仔徒Y(jié)構(gòu)也是很關(guān)鍵的因素。除了此次設(shè)計(jì)之外,其余的參考設(shè)計(jì)必須根據(jù)不同產(chǎn)品的生產(chǎn)條件來具體的選擇模孔的孔型結(jié)構(gòu)。- 11 -第三章 設(shè)計(jì)計(jì)算與校核3.1 拉拔模參數(shù)計(jì)算1. 拉拔模材料陶瓷拉絲模:適于應(yīng)力不大的條件下,拉制直徑 6.0mm 以下的鋼絲、有色金屬線材或棒材2. 加工率 ξ36.5%10D)-(2QH2Q?????拉拔模角 α查《有色金屬擠壓與拉拔技術(shù)》(文獻(xiàn)二)表 3.1,用插值法選取。oo9182??,表 3.1 拉拔模角道次加工率 2α純銅 軟銅 硬鋼 鋁 銅 黃銅10 5 3 2 7 5 415 7 5 4 11 8 620 9 7 6 16 11 925 12 9 8 21 15 1230 15 12 10 26 18 1535 19 15 12 32 22 1840 23 18 15 - - -- 12 -3.拉拔模口形狀設(shè)計(jì)查文獻(xiàn)二表 3.2,取摩擦系數(shù) f=0.11,查文獻(xiàn)二表 11-2 由插值算得1d=2.4, lch=0.3-0.4D1 表 3.2 摩擦系數(shù)金屬與合金 摩擦系數(shù)1 2 3 4紫銅 0.10-0.12 0.15 0.15 0.16H62 0.11-0.12 0.11 0.11 0.11H68 0.09 0.09 0.12 -HSn70-1 0.10 0.11 0.12 -取 lch=0.3D1=0.9。Ly= ?cot5.0amax)( D??a=1.1-1.4,取 1.3。算得 Ly=3.60。1r5.??取系數(shù)為 1.3。L f=3.8。4. 拉拔功率的計(jì)算 W準(zhǔn)備參數(shù)567.0tanB??f3.1D2HQ?- 13 -364.0DlfC1d??查得 δ s=1274MPa。 634.0)1(s1x????B??753.011s??Csxe6.28WD4W11????s5. 卷筒轉(zhuǎn)速計(jì)算 n取蝸桿傳動(dòng)機(jī)械效率為 80%,則 smsW/601/.01*VB ???蝸卷筒直徑為 Φ350mm,周長(zhǎng) L=1100mm,則頻率 fsVB/r83.1/Lf??所以轉(zhuǎn)速 n=60*f=110r/min。3.2 傳動(dòng)比的分配與初步設(shè)計(jì)預(yù)選卷筒轉(zhuǎn)速 60r/min,查《機(jī)械設(shè)計(jì)機(jī)械設(shè)計(jì)基礎(chǔ)課程設(shè)計(jì)》(文獻(xiàn)一)附表 9-1,選取電機(jī) Y132S1-2 電動(dòng)機(jī)。查得該電機(jī)的滿載轉(zhuǎn)速為 2900r/min??倐鲃?dòng)比 I=2900/110=26.4。預(yù)分配傳動(dòng)比為 i 帶 =2,i 蝸 =13.2。3.3 帶傳動(dòng)的設(shè)計(jì)計(jì)算1. 拉確定計(jì)算功率 Pca工作時(shí)間為 8h。查《機(jī)械設(shè)計(jì)》(文獻(xiàn)三)表 8-7 查得工作情況系數(shù)- 14 -KA=1.0,故 KWPAca05.6??2. 選擇 V 帶的帶型小帶輪轉(zhuǎn)速 n1=2900/2=1450r/min。根據(jù) Pca、n 1由文獻(xiàn)三圖 8-11 選擇A 型。3. 初選小帶輪的基準(zhǔn)直徑 dd1并驗(yàn)算帶速查出 dd1范圍為 125-140。查文獻(xiàn)三表 8-6 和表 8-8,取 dd1=90mm。驗(yàn)算帶速 smndvs /30/8.610/m5?????故帶速是合適的。計(jì)算大帶輪直徑 dd2因?yàn)?dd2=i 帶 dd1=180mm。查文獻(xiàn)三表 8-8。取 dd1=280mm。4. 確定 V 帶的中心距 a 和基準(zhǔn)長(zhǎng)度 Ld因?yàn)?0.7(d 1+d2)2.9 該結(jié)果不可用。故選 Zρ=2.8。(6)確定許用接觸應(yīng)力[ ]H?根據(jù)蝸輪材料為鑄磷錫青銅 ZCnSn10P1,金屬模鑄造,蝸桿螺旋齒面硬度45HRC,故查文獻(xiàn)三表 11-7 得蝸輪的基本許用應(yīng)力 。MPaH94.206]['??工作壽命 Lh取 12000h。故應(yīng)力循環(huán)次數(shù) N7h2109.60N??Ljn壽命系數(shù) KHN 72.018?NH則 MPaKHNH94.206][]['??(7)計(jì)算中心距 a m7.12)5.23610(86751.3 ????故取 a=160mm。5.蝸桿與蝸輪的幾何參數(shù)查文獻(xiàn)四表 4-7 與表 4-8.查得蝸輪與蝸桿主要尺寸如下(1)蝸桿模數(shù) m=5,蝸桿長(zhǎng)度 b- 19 -mz89)06.1(b2????取 b=130mm。直徑系數(shù) q=10分度圓直徑 d1 mq72d1?齒頂圓直徑 da1 hdaa962*1??齒根圓直徑 df1 mchdaf 2.63)(2*1????分度圓導(dǎo)程角 r= '05482o軸向齒距 pa=25.133 mm。(2)蝸輪蝸輪齒數(shù) z2=53,變位系數(shù) x2=+0.500,驗(yàn)算傳動(dòng)比 ii=z2/z1=13.25。這時(shí)的傳動(dòng)比誤差為 是允許的。%679.34.5-??蝸輪分度圓直徑 d2d2=mz2=265mm,寬度 B 取 40.2mm。齒根圓直徑 df2- 20 -,??m2572d*2*2 ????cxhmaf齒頂圓直徑 da2 xhdaa280)(2*2???maa2*2咽喉母圓半徑 rg2 darg2012??6.校核齒根彎曲疲勞強(qiáng)度 ][K53.12FFFaYmdT?????(1)許用彎曲應(yīng)力 ][F查文獻(xiàn)三表 11-8 得出鑄磷錫青銅金屬模鑄造的彎曲應(yīng)力為。MPaF56]['??壽命系數(shù) KFn 6153.09?NFn許用彎曲應(yīng)力 ][F?MPaKFn457.3]['???(2)螺旋角影響系數(shù) Yβ 824.01??r?- 21 -(3)當(dāng)量齒數(shù) zv2 3.6cosZ32?rzv(4)齒形系數(shù) Yfa2根據(jù)變位系數(shù)和當(dāng)量齒數(shù),查文獻(xiàn)三圖 11-19 可得齒形系數(shù) YFa2=2.1代入彎曲應(yīng)力校核式中得 ][421.09.1528037651. FF ?? ?????故彎曲強(qiáng)度是滿足要求的。7.驗(yàn)算效率 η效率公式 )tan(96.0-5vr????)((1)相對(duì)滑動(dòng)速度 Vs smrds /03.4cos106????(2)當(dāng)量摩擦角 φ v根據(jù)相對(duì)滑動(dòng)速度 Vs查文獻(xiàn)三表 11-18,利用插值法算出 。'01342?v?代入效率計(jì)算式中 %2.83%10)961tan(38960'''0''??????大于原估計(jì)值 80%。結(jié)論:該結(jié)果是正確的。- 22 -8.精度等級(jí)公差和表面粗糙度的確定考慮到所設(shè)計(jì)的蝸桿傳動(dòng)是動(dòng)力傳動(dòng),屬于通用機(jī)械減速器,從GB/T10089-1988 圓柱蝸桿蝸桿精度選擇 8 級(jí)精度,側(cè)隙種類為 f,標(biāo)注為 8f GB/T 10089-1988.查文獻(xiàn)一附表 10-84,齒面粗糙度 Ra=1.6.齒頂圓粗糙度 Ra=1.6.查文獻(xiàn)一附表 10-83,蝸輪、蝸桿齒胚基準(zhǔn)面徑向和斷面跳動(dòng)公差如表所示表 3.3 蝸輪、蝸桿齒胚基準(zhǔn)面徑向和斷面跳動(dòng)公差基準(zhǔn)面直徑 d 8 級(jí)精度跳動(dòng)31.5-63 1063-125 149.尺寸和行狀公差蝸桿、蝸輪齒胚尺寸和形狀公差如表所示表 3.4 蝸桿、蝸輪齒胚尺寸和形狀公差精度等級(jí) 8 級(jí)尺寸公差 IT7孔形狀公差 IT6尺寸公差 IT6軸形狀公差 IT5齒頂圓直徑公差 IT810.熱平衡計(jì)算- 23 -由蝸輪直徑和蝸桿長(zhǎng)度,濺油散熱面積預(yù)取 S=1.0654m2。取表面散熱系數(shù) 。cm02d/W15???則油溫 cSPd00 814.37)(12t ????????所以要改善散熱狀況。改善方法有三:①加散熱片增加散熱面積②在蝸桿軸端加裝風(fēng)扇③在傳動(dòng)箱內(nèi)增加冷卻循環(huán)管路本次采用方法③在傳動(dòng)箱內(nèi)增加冷卻循環(huán)管路。11.誤差項(xiàng)目(1)蝸桿軸向齒距極限偏差 fpx=0.025.軸向齒距累積公差 fpx2=0.045.(2)蝸輪一齒徑向綜合公差 045.f'i?3.6 蝸桿軸的設(shè)計(jì)計(jì)算1.軸的初步設(shè)計(jì)尺寸如圖所示- 24 -圖 3.1 蝸桿軸(1)根據(jù)公式 d≥C×(P 2/n2)1/3=60.37(2)這根是高速軸,所以選擇柱銷聯(lián)軸器??紤]到安全因素,即選擇軸孔直徑為 38 mm,軸長(zhǎng)取 50。(3)根據(jù)密封圈確定第二段軸徑,根據(jù)第一段軸徑 63 mm,故取第二段軸徑為 45 mm。(4)第三段軸上安裝圓錐滾子軸承,由軸承標(biāo)準(zhǔn)件取得內(nèi)徑為 50 mm。(5)第四段取直徑 60mm.。(6)因?yàn)榘惭b了甩油板需要高 2mm,所以第五段直徑取 56mm。(7)尺寸和第四段一樣 直徑為 60mm(8)上同 5、6.(9)第十段需要安裝角接觸軸承 因此直徑為 50 mm 長(zhǎng)取 30mm(10)總軸長(zhǎng) 465mm2. 確定各段軸長(zhǎng)⑴由上述“⑵”得第一段軸長(zhǎng)為 50mm⑵因?yàn)閷?shí)際安裝時(shí)軸承需推進(jìn) 3 mm 潤(rùn)滑間隙,所以軸肩寬度取為 8 mm。(即上述的“⑹”這段軸肩寬度)根據(jù)箱體壁厚以及箱體側(cè)視圖的寬度為 116,以及蝸輪端面距離內(nèi)壁距離為(116-72)/2=22。以及蝸輪輪轂長(zhǎng)度為 96。讓整體布局成為對(duì)稱分布。但需要注意的是:我們必須留出擋油板或分油盤的空隙。⑶因第三段上圓錐滾子軸承 T 為 26.25 mm,故軸長(zhǎng)取為 30 mm,滿足要求。 英文文獻(xiàn)翻譯學(xué) 生 姓 名:學(xué) 院:專 業(yè) 及 班 級(jí) :學(xué) 號(hào):指 導(dǎo) 教 師 : 械可靠性設(shè)計(jì)方法及其研究應(yīng)用程序文摘基于可靠性測(cè)試和故障數(shù)據(jù)的統(tǒng)計(jì)分析,機(jī)械可靠性設(shè)計(jì)的基本任務(wù)為工程實(shí)踐提出mathematical-mechanical模型和方法。這樣的工作狀態(tài)和生活的機(jī)械產(chǎn)品在規(guī)定的工作條件下可以在設(shè)計(jì)階段預(yù)測(cè)。機(jī)械可靠性設(shè)計(jì)的內(nèi)涵和發(fā)展闡述了通過整合現(xiàn)代mathematical-mechanical理論。一系列的理論和方法,如機(jī)械可靠性設(shè)計(jì)、動(dòng)態(tài)可靠性設(shè)計(jì)、可靠性優(yōu)化設(shè)計(jì)、可靠性靈敏度設(shè)計(jì),可靠性穩(wěn)健設(shè)計(jì),清晰、系統(tǒng)地解釋道?;谔卣鞯臋C(jī)械可靠性設(shè)計(jì),以及研究礦井提升機(jī)的可靠性設(shè)計(jì),以礦井提升機(jī)主軸軸承為例,論述了可靠性設(shè)計(jì)在礦井提升機(jī)中的應(yīng)用設(shè)計(jì)1.介紹科學(xué)技術(shù)的不斷發(fā)展使得更大的需求的產(chǎn)品,這不僅應(yīng)該更好的性能,但也更高的可靠性。在傳統(tǒng)的基礎(chǔ)上設(shè)計(jì),可靠性設(shè)計(jì)過程材料特性等參數(shù),尺寸部分,負(fù)載,力量和其他人是隨機(jī)變量服從一定的統(tǒng)計(jì)規(guī)律。此外,數(shù)學(xué)概率模型及其分布將會(huì)根據(jù)這個(gè)設(shè)計(jì)規(guī)則形成的。由于概率和統(tǒng)計(jì)理論和強(qiáng)度理論公式,在一定概率部分的損害條件也得到,從而他們的維度和生活在一定的可靠性計(jì)算,既滿足操作要求,有助于優(yōu)化設(shè)計(jì)的形成參數(shù)[1],或零件的可靠性和系統(tǒng)可以根據(jù)可靠性設(shè)計(jì)總結(jié)理論。因此,上述設(shè)計(jì)彌補(bǔ)了傳統(tǒng)設(shè)計(jì)的缺點(diǎn)和減少之間的距離設(shè)計(jì)程序和生產(chǎn)實(shí)踐。2.機(jī)械產(chǎn)品可靠性優(yōu)化設(shè)計(jì)的發(fā)展現(xiàn)狀可靠性優(yōu)化設(shè)計(jì)已成為優(yōu)化設(shè)計(jì)的一個(gè)重要分支。使用的機(jī)械零件,齒輪減速器。中國的可靠性優(yōu)化設(shè)計(jì)齒輪傳動(dòng)和行星齒輪傳動(dòng)的可靠性優(yōu)化設(shè)計(jì),等等的雷達(dá),通信的可靠性問題和其他方面的機(jī)器已經(jīng)被提出中國在 1960 年代。經(jīng)濟(jì)快速發(fā)展和改革開放的 1970 年代末推進(jìn)系統(tǒng)可靠性的關(guān)鍵部件的使用和民用項(xiàng)目。經(jīng)過多年的努力,可靠性軍事組件有兩個(gè)數(shù)量級(jí)。在 1980 年代,一群研究人員和技術(shù)的可靠性組織的骨干,建立在中國,進(jìn)一步實(shí)現(xiàn)狀態(tài)可靠性工程部門已經(jīng)開始。1990 年,中國的民用和軍用產(chǎn)品質(zhì)的飛躍,許多民用電器產(chǎn)品,使得產(chǎn)品質(zhì)量的可靠性達(dá)到了一個(gè)新的高在過去的 30 年里、優(yōu)化設(shè)計(jì)方法、機(jī)械產(chǎn)品的快速發(fā)展,在過去的 30 年里、優(yōu)化設(shè)計(jì)方法、機(jī)械產(chǎn)品的快速發(fā)展,特別是在機(jī)械產(chǎn)品的可靠性設(shè)計(jì)的發(fā)展,技術(shù)和實(shí)踐機(jī)械產(chǎn)品的工程實(shí)踐。人認(rèn)為機(jī)械產(chǎn)品的優(yōu)化設(shè)計(jì)可靠性是更合理的基礎(chǔ),因?yàn)樵趥鹘y(tǒng)機(jī)械產(chǎn)品比作為一個(gè)整體,性能的隨機(jī)性,在未來的工作。也就是說,一些參數(shù)的仿真機(jī)械產(chǎn)品作為隨機(jī)變量,基于可靠性的結(jié)構(gòu)優(yōu)化設(shè)計(jì)的機(jī)械產(chǎn)品可靠性要求的集成優(yōu)化設(shè)計(jì)的約束條件,或者到我們的目標(biāo)函數(shù)優(yōu)化設(shè)計(jì),即在某些可靠性指標(biāo)權(quán)重,降低機(jī)械產(chǎn)品的成本,或通過調(diào)整參數(shù)的機(jī)械產(chǎn)品,或下某些情況下,機(jī)械產(chǎn)品的最大重量和成本,通過調(diào)整參數(shù),零部件的可靠性。機(jī)械產(chǎn)品的主要需求不僅是安全的,可靠的和經(jīng)濟(jì)的合理性。因此,機(jī)械產(chǎn)品的優(yōu)化設(shè)計(jì),可以顯著提高設(shè)計(jì)的質(zhì)量和經(jīng)濟(jì)效益,機(jī)械產(chǎn)品的可靠性設(shè)計(jì)實(shí)證研究和探索的重要問題在國內(nèi)外電流。然而,由于機(jī)械產(chǎn)品可靠性分析與大量的失效形式和其他相失效模式的問題,可靠性更加困難,越來越復(fù)雜,因此,機(jī)械產(chǎn)品的可靠性設(shè)計(jì)變得更加困難。此外,最佳的解決方案算法被用來優(yōu)化設(shè)計(jì),也進(jìn)行了討論。因此,當(dāng)前的可靠性和水平優(yōu)化設(shè)計(jì)機(jī)械產(chǎn)品仍在開發(fā)的早期階段[1]。3.機(jī)械產(chǎn)品可靠性高的優(yōu)點(diǎn)3.1.提高產(chǎn)品的使用率為了提高機(jī)械產(chǎn)品的可靠性,減少停機(jī)時(shí)間和維修人員,提高產(chǎn)品的利用率?,F(xiàn)代機(jī)械產(chǎn)品的工作環(huán)境變得更加嚴(yán)重,從陸地、海洋和提供一個(gè)惡劣的環(huán)境空間的挑戰(zhàn),高可靠性,高安全性和系統(tǒng)的特征,系統(tǒng)集成和其他需要繼續(xù)很長(zhǎng)一段時(shí)間迫使系統(tǒng)必須有一個(gè)良好的可靠性。3.2.防止事故和故障的發(fā)生提高機(jī)械產(chǎn)品的可靠性,它可以防止事故和故障,特別是在為了避免災(zāi)難性事故的發(fā)生。1986 年挑戰(zhàn)者號(hào)航天飛機(jī)是美國海豹的失敗,起飛、爆炸 76 秒。造成經(jīng)濟(jì)損失 1.2 億美元?,F(xiàn)代高新技術(shù)產(chǎn)品,因其嚴(yán)格的函數(shù)。3.3.明顯的技術(shù)和經(jīng)濟(jì)效益機(jī)械可靠性和優(yōu)化設(shè)計(jì)是基于概率理論和優(yōu)化設(shè)計(jì)參與機(jī)制的方法,應(yīng)用程序設(shè)計(jì),強(qiáng)度,和設(shè)計(jì)、材料的選擇和生活的失效分析,和許多其他設(shè)計(jì)變量和參數(shù),并提供明確的技術(shù)。和經(jīng)濟(jì)和可靠性指數(shù)也存在,目標(biāo)函數(shù)優(yōu)化模型和概率和非線性的特點(diǎn),非凸非線性,需要滿足各種隨機(jī)的約束。機(jī)械產(chǎn)品設(shè)計(jì)方法,根據(jù)產(chǎn)品不僅能保證工作產(chǎn)品的可靠性和安全性,功能,重量,體積小,成本和其他參數(shù)優(yōu)化、技術(shù)和經(jīng)濟(jì)效益明顯改善。4.機(jī)械產(chǎn)品的可靠性優(yōu)化設(shè)計(jì)這提出了可靠性優(yōu)化設(shè)計(jì)問題??煽啃詢?yōu)化設(shè)計(jì)主要考慮以下問題:1.優(yōu)化設(shè)計(jì),可以根據(jù)不同的設(shè)計(jì)要求,選擇不同的特點(diǎn)函數(shù)作為目標(biāo)函數(shù)。2.設(shè)計(jì)變量。結(jié)構(gòu)的總體規(guī)模和大小的組件和機(jī)械性能,等,是最常見的機(jī)械部件的設(shè)計(jì)變量,需要優(yōu)化和決賽獨(dú)立參數(shù)優(yōu)化設(shè)計(jì)過程。在設(shè)計(jì)參數(shù)的確定隨機(jī)性和分布參數(shù)應(yīng)被視為反映的實(shí)際情況部分。3.約束條件。約束條件不僅可以限制在結(jié)構(gòu)參數(shù),但是也部分的功能,這需要參考常優(yōu)化設(shè)計(jì),根據(jù)具體情況來確定。在會(huì)議上減少可靠性的要求,或在會(huì)議成本,總成本的價(jià)值的尺寸、重量和其他指標(biāo),最大可靠性。因此,可靠性設(shè)計(jì)機(jī)械產(chǎn)品可分為兩種類型的最優(yōu)可靠性的數(shù)學(xué)模型設(shè)計(jì)??煽啃宰鳛槟繕?biāo)函數(shù)??煽啃宰鳛榧s束條件5.機(jī)械零件的設(shè)計(jì)特點(diǎn)因?yàn)閴毫梢灾С植糠趾筒牧系膹?qiáng)度但隨機(jī)不確定值變量和不連續(xù)性,分布函數(shù)是數(shù)學(xué)中考慮。這是因?yàn)樨?fù)載,強(qiáng)度、尺寸和操作 alternativeness 的特性和統(tǒng)計(jì)特性[2],需要,因此概率和統(tǒng)計(jì)理論來分析和解決這個(gè)問題。5.1.定量描述產(chǎn)品的失效概率和可靠性可以做到的眾所周知,設(shè)計(jì)的產(chǎn)品有一定的失敗概率,不能高于容許值中規(guī)定的技術(shù)文件。然而,可靠性設(shè)計(jì)可以提供產(chǎn)品的失效概率和可靠性定量。5.2.可以選擇各種可靠性指標(biāo)傳統(tǒng)的可靠性設(shè)計(jì)只有一個(gè)評(píng)價(jià)指標(biāo),即安全系數(shù)。通過相反,可靠性設(shè)計(jì)提供了各種和根據(jù)具體情況適當(dāng)?shù)乃饕龑?duì)于不同的產(chǎn)品,如失效概率、可靠性,沒有失敗的平均工作時(shí)間,firstfailure 駕駛英里(車輛)、可維護(hù)性、可用性等等。5.3.環(huán)境的影響考慮在內(nèi)由于很大的影響在壓力下面的環(huán)境因素如溫度、影響,地震、防潮、霧、侵蝕、灰塵、磨損,可靠性大大影響結(jié)果。,因此考慮到環(huán)境能更好地反映零件的實(shí)際操作6.機(jī)械產(chǎn)品的可靠性設(shè)計(jì)原則比起電動(dòng)產(chǎn)品,機(jī)械產(chǎn)品有自己的特點(diǎn)和方法設(shè)計(jì)和分析。總之,機(jī)械產(chǎn)品的可靠性設(shè)計(jì)應(yīng)堅(jiān)持的原則(3、4),如下所示:6.1.可靠性設(shè)計(jì)與傳統(tǒng)設(shè)計(jì)的結(jié)合傳統(tǒng)的安全系數(shù)法直觀,簡(jiǎn)單,容易掌握,一個(gè)小工作負(fù)載可以保證機(jī)械零件的可靠性在大多數(shù)情況下。但目前是非常很難進(jìn)行傳統(tǒng)的機(jī)械產(chǎn)品可靠性設(shè)計(jì)在特殊的情況下。由于這個(gè)原因,它似乎是合理的和必要的改進(jìn)和完善傳統(tǒng)方法的幫助下概率設(shè)計(jì)。此外,可靠性概率設(shè)計(jì)旨在關(guān)鍵部分可以逐步進(jìn)行6.2.質(zhì)量和數(shù)量設(shè)計(jì)的集成數(shù)量設(shè)計(jì)指的是數(shù)量分析和計(jì)算的可靠性,但它不能解決所有問題與可靠性有關(guān)。更重要的是,在某些時(shí)候,它是不合適的,甚至是不可能的為可靠性定量闡述了。從而需要集成的質(zhì)量和可靠性數(shù)量。至于部分的質(zhì)量要求和難以使數(shù)量計(jì)算,它更合理有效的進(jìn)行質(zhì)量設(shè)計(jì)。實(shí)踐證明,設(shè)計(jì)質(zhì)量扮演著一個(gè)很重要的角色,保證和提高機(jī)械產(chǎn)品的可靠性。,因此在可靠性設(shè)計(jì)的過程中,應(yīng)該綜合設(shè)計(jì)質(zhì)量和數(shù)量。6.3.并聯(lián)機(jī)械可靠性和耐用性在廣泛的意義上,機(jī)械產(chǎn)品的可靠性包括可靠性和耐用性。因此,相應(yīng)的機(jī)械可靠性設(shè)計(jì)包括上面提到的兩個(gè)。具體來說,可靠性設(shè)計(jì)是特定于偶爾的錯(cuò)誤,而耐久性是特定于漸進(jìn)的缺點(diǎn),和他們的錯(cuò)機(jī)制是不同的。6.4.并聯(lián)系統(tǒng)和零部件的可靠性考慮到機(jī)械零件的低 standarization 和普遍性程度和復(fù)雜功能狀態(tài)和結(jié)構(gòu),設(shè)計(jì)師必須做出一個(gè)全面的系統(tǒng)和部件的設(shè)計(jì)。零件強(qiáng)度基本保證系統(tǒng)可靠性和部分最基本單元的整體系統(tǒng)。在這種情況下,零件的設(shè)計(jì)應(yīng)該添加傳統(tǒng)可靠性設(shè)計(jì)。systematicreliability 設(shè)計(jì)的目的是為了實(shí)現(xiàn)協(xié)調(diào)和優(yōu)化的技術(shù)性能,重指數(shù),系統(tǒng)的制造成本和使用壽命,提供系統(tǒng)已經(jīng)滿足了可靠性指標(biāo)和實(shí)現(xiàn)預(yù)定的功能。7.可靠性設(shè)計(jì)的 Allication 礦井提升機(jī)礦井提升機(jī)的可靠性設(shè)計(jì)的關(guān)鍵是如何改變目前設(shè)備和參數(shù)有關(guān)(例如零部件的尺寸、強(qiáng)度、加載)通過實(shí)驗(yàn)數(shù)據(jù)統(tǒng)計(jì)最后得出其分布。此外,可靠性、維度和生活服務(wù)還可以計(jì)算一個(gè)接一個(gè)。起重機(jī)減速器和主軸結(jié)構(gòu)配有滾動(dòng)軸承,其壽命一個(gè)至關(guān)重要的對(duì)絞車的操作可靠性的影響。現(xiàn)在,在滾動(dòng)軸承的周期時(shí)間生命的租賃可以達(dá)到甚至超過材料疲勞極限的循環(huán)基地(約 107)。這是普遍采用有限的生命設(shè)計(jì)為了整個(gè)結(jié)構(gòu)合理化,減少其維度和重量,最后充分利用材料和提高零件的承載能力。的條件這周期 is106 和可靠性為 90%(即平等的幫助下負(fù)載的動(dòng)態(tài)負(fù)載評(píng)級(jí) C 滾動(dòng)軸承可以運(yùn)行 106 運(yùn)行,與此同時(shí) 90%的軸承不遭受疲勞點(diǎn)蝕故障[5])的設(shè)計(jì)和選擇執(zhí)行承載力。在前面分析的基礎(chǔ)上,滾動(dòng)軸承的可靠性設(shè)計(jì)主軸結(jié)構(gòu)滾動(dòng)軸承是vice-varying壓力。失敗的過程中操作的結(jié)果常規(guī)的壓力變化。由于壓力的長(zhǎng)期影響,表面金屬倒了滾動(dòng)體和內(nèi)部和外部的詳細(xì)信息。疲勞點(diǎn)蝕形成,也會(huì)導(dǎo)致疲勞失效。證明原件及設(shè)備或設(shè)備的壽命,所有的函數(shù)失敗了由于局部疲勞失效或故障,符合威布爾分布。所以是滾動(dòng)軸承。失效概率F可以描述為在上面,一個(gè) N 代表生命特征;N 周期,以 106 年為單位,為參數(shù)??煽啃钥梢灾贫?對(duì)數(shù)后雙方的操作: 基于前面的分析,滾動(dòng)軸承的額定壽命是 10 L(即失效概率可靠性為 90%時(shí)是10%)。因此,額定壽命 在上面,90 N 時(shí)指的是周期的可靠性是 90%。(3)除以(4),結(jié)果就變成: 8.結(jié)論通過研究機(jī)械可靠性設(shè)計(jì)和結(jié)合礦井提升機(jī)的結(jié)構(gòu),它提出了可靠性設(shè)計(jì)的關(guān)鍵過程的應(yīng)用到礦井提升機(jī)如下。的首先是確定有關(guān)參數(shù)的統(tǒng)計(jì)數(shù)據(jù),然后建立故障數(shù)學(xué)模型,最后可以操作的可靠性設(shè)計(jì)。此外,礦井提升機(jī)的滾動(dòng)軸承被認(rèn)為是本研究的對(duì)象,同時(shí)軸承的疲勞壽命統(tǒng)計(jì),軸承的生活的規(guī)則符合威布爾分布是后天習(xí)得的。接下來,根據(jù)滾動(dòng)軸承的額定壽命的效果是 10 L(即周期)90%的可靠性時(shí),軸承的壽命(循環(huán))計(jì)算根據(jù)給定的可靠性。一句話,這是極其有意義的提升時(shí)的可靠性的提高機(jī)械可靠性設(shè)計(jì)理論知識(shí)應(yīng)用到礦井提升機(jī)的設(shè)計(jì)的部分。引用[1]張曉琴,莫才頌.機(jī)械部件的可靠性設(shè)計(jì)分析[J].茂名雜志College,2008.1? ?91 - 93.[2]劉偉鑫??煽啃栽O(shè)計(jì)的機(jī)器。[M].北京:清華大學(xué)出版社,1996 年[3]孫偉,高聯(lián)華,姚新民等。機(jī)械產(chǎn)品的可靠性設(shè)計(jì)方法研究[J]。2007 年機(jī)械工業(yè)標(biāo)準(zhǔn)化 Design; Rolling Bearing1.IntroductionThe increasing development of science and technology has made greater requirements of products,which should be of not only better performance, but also higher reliability. On the basis of traditionaldesigns, the reliability design processes such parameters as material properties, dimension of parts, loads,strength and others to be random variables that comply with certain statistical law. Besides, mathematicalprobability model and its distribution will be formed according to this design rule. By virtue of probabilityand statistics theories and strength theory, the formula of probability for parts’ damage under givenconditions is also to be obtained and thereby their dimension and life under given reliability will becalculated, which both satisfies the operation requirements and helps with the formation of optimal designparameters[1], or the reliability of parts and system can be concluded according to the reliability designtheory. Therefore, the design mentioned above makes up for the disadvantages of the conventional designsand reduces the distance between design program and production practice.2.The Development Status of Reliability Optimization Design of Mechanical ProductsThe reliability-based optimization design has become an important branch of optimization design. Usedin the mechanical parts - gear, gear reducer. China has been the reliability-based optimization design ofgear transmission and the reliability-based optimization design of planetary gear transmission, etc. In thereliability of communication problem, radar, and other aspects of the machines have been put forward inChina in the 1960s. With the rapid economic development and reform and opening in the late 1970spropulsion system reliability of key components of use and civil items. After years of efforts, the reliabilityof military components has two orders of magnitude. In the 1980s, a group of researchers and technicalbackbone of the reliability of the organization, established in China, further implementation of stateministries of reliability engineering has begun. In 1990, China's civil and military products with aqualitative leap, many civil electrical products, has made such a reliability of the product quality hasreached a new high.In the past 30 years, optimization design method, the rapid development of mechanical products,especially in the development of the reliability design of mechanical products, technology and practical inengineering practice of mechanical products. People think that the optimal design of mechanical productsreliability is more reasonable basis, because in traditional mechanical products than by as a whole, theperformance of randomness, in the future work. That is to say, some parameters of the simulation ofmechanical products as random variables, in structure optimization design based on reliability, thereliability requirements of integration of mechanical products for optimization design of the constraintconditions, or into our target function optimization design, namely, in certain reliability index weight,reduce the cost of mechanical products, or by adjusting the parameters of mechanical products, or undercertain conditions, the maximum weight and cost of mechanical products by adjusting the parameters, thereliability of the parts. The main requirements of mechanical products are not only safe, reliable andeconomical rationality. Therefore, the optimization design of mechanical products, can significantlyimprove the design quality and economic benefit, the reliability design of mechanical products has becomean important problem in the empirical research and exploration in the domestic and foreign current.However, due to mechanical product reliability analysis is related to large amounts of invalidation formsand other relevant problems of failure modes, reliability more difficult, more and more complex, therefore,the reliability design of mechanical products is becoming more difficult. In addition, the optimal solutionalgorithm was used to optimize the design, is also discussed. Therefore, the current level of reliability andoptimal design of mechanical products is still in the early stages of development [1].3.The Advantages of High Reliability Mechanical Products3.1. Improve the Usage Rate of ProductTo improve the reliability of mechanical products, reduce downtime and maintenance personnel,improve product utilization. Modern machinery products work environment become more severe, andfrom the land, sea and provide a harsh environment space challenge, high reliability, high safety and thecharacteristics of the system, system integration and other needs to continue for a long time withoutforcing the system must have a good reliability.3.2.Prevent the Occurrence of Accidents and FailuresTo improve the reliability of mechanical products, it can prevent accidents and failure, especially inorder to avoid catastrophic accidents. The 1986 challenger space-shuttle is America's seal failure, aftertake-off, explosion 76 seconds. The economic loss caused by 120 million dollars. Modern high-techproduct, because its strict function.3.3.Obvious Technology and Economic BenefitsMechanical reliability and optimal design is based on probability theory and optimization designmethod, the application of participation mechanism design, strength, and the design, material selectionand life failure analysis, and many other design variables and parameters, and provide clear technology.And the economy and reliability index also exists, the objective function optimization model and thecharacteristics of probability and nonlinear, non-convex nonlinear, need to meet all kinds of randomconstraints. Mechanical product design method, according to the work product can not only ensure thereliability and safety of the product, the function, the weight, small volume, cost and other parameters areoptimized, technical and economic benefits have been markedly improved.4.Reliability Optimization Design of Mechanical ProductsThis puts forward the problem of reliability optimization design. Reliability optimization design mainlyconsiders the following questions:? With optimum design, can according to different design requirements, choose different characteristicfunction as the objective function.? Design variables. The overall size of the structure and size of components and mechanical properties,etc, are the most common design variables of mechanical components, is needed to optimize and finalindependent parameters optimized design process. In the determination of design parameters of therandomness and distribution parameters should be regarded as reflect the actual conditions of theparts.? Constraint conditions. Constraint conditions can be restrictions not only on structural parameters, butalso on a function of parts, this need refer to the conventional optimal design, according to thespecific circumstances to determine.In the meeting reduce the requirement of reliability, or in the meeting of the total cost of cost, the valueof size, weight and other indicators, the maximum reliability. Therefore, the reliability design ofmechanical products can be divided into two types of the mathematical model of optimum reliabilitydesign.? Reliability as the objective function.? Reliability as a constraint condition5.The Design Features of Mechanical Parts5.1.Stress and Strength Are Random VariablesBecause the stress that parts can support and materials’ strength are not certain values but randomvariables with discreteness, distribution function is taken into account in mathematics. It’s because loads,strength, dimension and operation have the characteristics of alternativeness and statistical property [2],and thus probability and statistics theories are needed to analyze and solve the problem.5.2.Quantitative Description of Products’ Failure Probability and Reliability Can Be DoneAs is known, the designed products have certain failure probability, which can not be above thepermissible value stated in the technical documents. However, the reliability design can provide products’failure probability and reliability quantitively5.3.Various Reliability Indexes Can Be ChosenThe traditional design has only one evaluation index for reliability, namely, safety coefficient. Bycontrast, the reliability design provides various and appropriate indexes according to the specific conditionsfor different products, such as failure probability, reliability, non–failure working time on average, firstfailuredriving miles(for vehicles), maintainability, availability and so on.5.4.The Effect of Environment Is Taken into ConsiderationOwing to the great influence on stress of the following surroundings factors such as temperature,impact, quake, moisture, mist, erosion, dust, and abrasion, reliability is considerably affected consequently.And thus taking environment into consideration can reflect parts’ actual operation better6.The Reliability Design Priciples of Mechanical ProductsCompared with electric products, mechanical products have their own characteristics and ways ofdesign and analysis. To sum up, the reliability design of mechanical products should stick to the principlesas follows [3, 4]:6.1.Combination of Reliability Design and Traditional DesignThe traditional safety coefficient method which is intuitive, simple and easy to master and has a smallworkload can ensure the reliability of mechanical parts under most circumstances. But at present it is verydifficult to carry out traditional reliability design of mechanical products in special cases. For this reason, itseems reasonable and necessary to improve and perfect the traditional method with the help of probabilitydesign. Moreover, the reliability probability design aimed to crucial parts can be gradually performed6.2.Integration of Quality and Quantity DesignQuantity design refers to the quantity analysis and calculation of reliability, but it can not solve all theproblems concerned with reliability. What’s more, at some times, it is inappropriate and even impossiblefor reliability to expound quantitively. And thereby the reliability requires the integration of the quality andquantity. As for the parts which have the quality requirements and are difficult to make quantity calculation,it is more reasonable and effective to conduct quality design. Practice has proved that the quality designplays an important role in assuring and improving the reliability of mechanical products. And thus duringthe process of reliability design, quality and quantity design should be integrated.6.3. Paralleling of Mechanical Reliability and DurabilityIn a broad sense, the reliability of mechanical products includes reliability and durability. Therefore,mechanical reliability design accordingly comprises the two mentioned above. Specifically speaking,reliability design is specific to occasional faults, while durability is specific to gradual faults, and their faultmechanism are different.6.4.Paralleling of System and Parts ReliabilityGiven that mechanical parts are of lower standarization and universality degree and have complexfunctional status and structure, the designers have to make a comprehensive design of system and parts.The parts strength is basic guarantee of systematic reliability and parts are the most basic unit of the wholesystem. In this case, parts’ design should add reliability design to the traditional one. The aim of systematicreliability design is to achieve the coordination and optimization of technical performance, weight index,manufacturing cost and service life of the system, providing that the system has satisfied the establishedreliability index and realized predetermined functions.7.The Allication of Reliability Design in Mine HoistThe key to the reliability design in mine hoist is how to change equipments at present and parametersconcerned (for instance the parts’ dimension, strength and loading) into statistics through experimental dataand finally conclude its distribution. Furthermore, the reliability, dimension and life service can also becalculated one after one.The decelerator and spindle structure in the hoist are equipped with rolling bearing, whose life span hasa vital impact on the operation reliability of the hoist. Now that the cycle times of rolling bearing duringthe lease of life can reach up to and even exceed the cycle base of material fatigue limit (about 107). It iscommon to adopt limited life design in order to rationalize the whole structure, reduce its dimension andweight, and at last make the best of materials and improve the bearing capacity of parts. On the conditionthat cycles is106and reliability is 90%(namely, with the help of equal load of dynamic load rating C, therolling bearing can run 106runs, and in the meanwhile 90% of the bearing does not suffer from fatiguepitting failure [5] )the design and choice of bearing capacity is executed.On the basis of the previous analysis, the reliability design of rolling bearing in spindle structure is tobe made.The rolling bearing stands vice-varying stress. The failure in the course of operation results from theregular changes of the stress. Because of the long-term effect of the stress, the surface metals fall downfrom both rolling body and inner and outer raceways. Fatigue pitting comes into being and also leads tofatigue failure. It is proved that the life span of the original and device or equipments, of all whosefunctions have failed due to partial fatigue failure or fault, is in line with Weibull distribution. So is that ofrolling bearing. The failure probability F can be described as:In the above, a N stands for characteristic life; N for cycles, with 106 as the unit; m for the parameter.Reliability can be formulated as:After logarithm operation on both sides:Based upon the preceding analysis, the rated life of rolling bearing is 10 L (that is, the failure probabilityis 10%) when the reliability is 90%. Thus the rated life isIn the above, 90 N refers to the cycles when the reliability is 90%.Divide (3) by (4), the result becomes:8.ConclusionThrough the study on mechanical reliability design and combination with the structure of mine hoist, itis proposed that the crucial procedure of reliability design’s application into mine hoist is as follows. Thefirst is to ascertain the statistics of the relevant parameters, then to set up the failure mathematical model,and finally the reliability design can be operated. Besides, the rolling bearing of mine hoist is regarded asthe object of this study, meanwhile bearing’s fatigue life as statistics, from which the rule that bearing’s lifeaccords with Weibull distribution is learned. Next, based on the result that the rated life of rooling bearingis 10 L (that is cycle) when the reliability is 90%, the bearing’s life (cycle) is calculated according to thegiven reliability. In a word, it is extremely meaningful for the improvement of hoist’s reliability when thetheoretical knowledge about mechanical reliability design is applied into the design of mine hoist’ parts.References[1] Zhang Xiaoqin, Mo Cai Song. Reliability Design Analysis of Mechanical Components [J] Journal of MaomingCollege, 2008?1??91-93.[2] Liu Weixin. Reliability Design of Machines.[M] Beijing: Tsinghua University Press, 1996[3] Sun Wei, Gao Lianhua, Yao Xinmin et al. The Research on Reliability Design Methods of Machine Products[J].Machinery Industry Standardization &Quality, 2007?8??14-17.[4] Xiang Yizhou, Chen Ge, Ding Liyu. The Reliability Design and Trial of Machine Product[J] Jo