I輕型貨車驅(qū)動橋設(shè)計II年 04 月目錄摘要 IVAbstract V1 緒論 11.1 課題的設(shè)計任務 .11.2 驅(qū)動橋的國內(nèi)外發(fā)展概況 .11.3 課題的技術(shù)路線 .22 總體方案設(shè)計 42.1 驅(qū)動橋總成的結(jié)構(gòu)形式選擇 .42.2 主減速器結(jié)構(gòu)形式的選擇 .52.3 主減速器錐齒輪支承形式的選擇 .52.3.1 主動錐齒輪的支承形式 .52.3.2 從動錐齒輪支承 .62.4 主減速器傳動形式的選擇 .62.5 差速器結(jié)構(gòu)形式的選擇 .82.6 半軸結(jié)構(gòu)形式的選擇 .83 主減速器齒輪副設(shè)計 103.1 傳動系載荷計算 .10III3.2 主減速器設(shè)計計算 .113.2.1 主從動錐齒輪齒數(shù)的選擇 .113.2.2 從動錐齒輪節(jié)圓直徑及端面模數(shù)的計算 .113.2.3 主從動錐齒輪的齒面寬度計算 .123.2.4 齒輪的偏移方向的選擇和偏移距計算 .123.2.5 螺旋角的選擇 .123.2.6 法向壓力角的選擇 .123.2.7 雙曲面齒輪幾何尺寸計算結(jié)果 123.3 主減速器雙曲面齒輪的強度計算及校核 .213.3.1 單位齒長圓周力的計算 .213.3.2 雙曲面錐齒輪輪齒彎曲強度校核 .223.3.3 輪齒接觸強度校核 .243.3.4 錐齒輪材料及熱處理 .253.4 主減速器齒輪的設(shè)計結(jié)果 .264 軸承的選擇 284.1 軸承支承受力分析 .284.2 軸承選擇 .314.2.1 軸承類型選擇 .314.2.2 軸承型號選擇 .324.2.3 軸承壽命校核 .344.3 軸承的設(shè)計結(jié)果 .345 半軸設(shè)計 365.1 半軸扭矩計算 .365.2 半軸直徑計算 .36IV5.3 半軸的強度計算及校核 .375.4 花鍵設(shè)計 .385.5 半軸花鍵校核 .385.6 半軸材料及熱處理 .395.7 半軸的設(shè)計結(jié)果 .406 主減速器總成設(shè)計 416.1 差速器齒輪設(shè)計 .416.2 差速器齒輪校核 .446.3 差速器殼體設(shè)計 .456.4 差速器設(shè)計結(jié)果 .457 主減速器嚙合印記調(diào)整及預緊裝置設(shè)計 477.1.1 軸承的預緊 .477.1.2 錐齒輪的調(diào)整 .488 橋殼設(shè)計 518.1 橋殼設(shè)計 .518.1.1 驅(qū)動橋殼的形式 .518.2 橋殼的設(shè)計結(jié)果 .518.3 橋殼強度校核 .528.3.1 最大鉛垂力工況 .538.3.2 最大側(cè)向力工況 .538.3.3 最大切向力工況 .549 課題的設(shè)計成果 569.1 設(shè)計成果 .5610 結(jié)論 .57V致謝 .58參考文獻 .59附 錄 .60VIVII摘要驅(qū)動橋是汽車總成中重要承載結(jié)構(gòu)之一,位于汽車傳動系的末端,其基本功用首先是增扭、降速,改變轉(zhuǎn)矩的傳遞方向,即增大由傳動軸或直接從變速器傳來的轉(zhuǎn)矩,并將轉(zhuǎn)矩合理的分配給左、右驅(qū)動車輪;其次,驅(qū)動橋還要承受作用于路面和車架或車身之間的垂直力、縱向力和橫向力,以及制動力矩和反作用力矩等。所以驅(qū)動橋結(jié)構(gòu)形式和設(shè)計參數(shù)直接影響汽車的動力性、燃油經(jīng)濟性、可靠性和汽車的使用壽命。本次課題設(shè)計是參考傳統(tǒng)的驅(qū)動橋的設(shè)計方法進行某兩噸輕型貨車的后驅(qū)動橋進行設(shè)計。首先通過已知的汽車相關(guān)參數(shù),確定驅(qū)動橋整體方案,包括驅(qū)動總成結(jié)構(gòu)形式為整體式驅(qū)動橋,主減速器結(jié)構(gòu)形式為單級主減速器,主減速器傳動形式選擇雙曲面錐齒輪傳動,主減速器主動錐齒輪選擇懸臂式支承,從動錐齒輪跨置式支承,差速器結(jié)構(gòu)形式選擇對稱式直齒錐齒輪差速器,半軸結(jié)構(gòu)形式選擇全浮式半軸,橋殼結(jié)構(gòu)形式為整體式?jīng)_壓焊接橋殼。然后對主減速器錐齒輪、軸承、半軸、差速器齒輪等主要零件尺寸計算,并進行強度校核。接下來是對差速器殼,主減速器殼和橋殼等不需要計算的零件設(shè)計,但必須要滿足汽車的使用要求。最后利用 CATIA 和 UG 三維建模軟件繪制零件三維圖并進行裝配。關(guān)鍵詞:輕型載貨汽車;驅(qū)動橋;CATIA 建模VIIIAbstractDrive axle is automobile assembly in an important bearing structure, located at the end of the automobile transmission system, and its basic function is the first increase torque and reducing the speed, change the torque transfer direction, which increases from the drive shaft or directly from the transmission of torque and torque and reasonable distribution to the left and right wheels; secondly, drive axle must bear the effect of road and the frame or body between the vertical force, longitudinal force and lateral force, and braking torque and reaction torque. So the structural form and design parameters of drive axle directly influence the power performance, fuel economy, reliability and service life of the vehicle.This topic design is refers to the traditional drive bridge design method carries on the design of the rear drive axle of a two ton light truck. First through known auto correlation parameters, determine the whole drive axle scheme, includes a drive assembly structure is an integral type driving axle, main reducer structure in the form of a single-stage main reducer and deceleration transmission form of hypoid gear selection, main reducer is active bevel gear selection cantilever support, driven bevel gear is arranged supporting type, the structure of the differential form of symmetrical straight tooth bevel gear differential, half shaft structure form selection full floating axle, the axle housing structure is integrally pressed welding axle housing. Then the main reducer bevel gears, bearings, half shaft, differential gears, and other major parts of the size of the calculation, and the strength of the check. Next to the differential housing, the main reducer shell and axle housing and other parts of the design does not need to be calculated, but must meet the requirements of the use of the car. Finally use CATIA and UG 3D modeling software to draw parts of the three-dimensional drawing and assembly.Key words: light truck; drive axle; CATIA modeling11 緒論1.1 課題的設(shè)計任務(1)設(shè)計參數(shù):本課題設(shè)計一種輕型卡車用的后驅(qū)動橋,原始設(shè)計參數(shù)如下:最高車速 95 km/h最大爬坡度 0.3最大總質(zhì)量 4235 kg 軸荷分配 1588kg / 2647kg最大扭矩 320 N.m / 2000 r/min額定功率 73kw / 3200 r/min輪胎規(guī)格 7.00-16輪距 1400速比 變速器:5.557,2.769,1.644,1.0,R5.15;主減速比:5.83。(2)設(shè)計任務:完成主減速器、軸承、半軸的設(shè)計計算;完成主減速器總成、差速器總成、橋殼的設(shè)計,并將其組裝成驅(qū)動橋總成。要求使用 CATIA 軟件完成驅(qū)動橋的三維設(shè)計,并使用 AutoCAD 軟件繪制二維工程圖紙。1.2 驅(qū)動橋的國內(nèi)外發(fā)展概況當前我國汽車零配件行業(yè)現(xiàn)狀主要表現(xiàn)為:一是零部件企業(yè)普遍呈現(xiàn)散、弱、小的特點,國內(nèi)零部件企業(yè)共有兩萬多家,其中中等規(guī)模以上汽車零部件企業(yè)近 8000 家,并且 90%集中在低端。零部件企業(yè)缺少自主知識產(chǎn)權(quán)的核心技術(shù),極大的制約了汽車工業(yè)的自主創(chuàng)新和自主開發(fā);二是汽車零部件行業(yè)相對于整車制造行業(yè)投入小,但是2行業(yè)整體的盈利能力比汽車整車制造行業(yè)好;三是汽車零部件企業(yè)主要為汽車整車制造廠配套生產(chǎn),普遍采用 OEM 訂單方式生產(chǎn),與整車廠商關(guān)聯(lián)度緊密,形成以整車廠商為龍頭,零部件企業(yè)為依托的產(chǎn)業(yè)集群。車橋行業(yè)的發(fā)展依賴于商用車行業(yè)的發(fā)展,近些年商用車市場形式良好,尤其是重卡市場更是推動了車橋行業(yè)的迅速發(fā)展,各生產(chǎn)廠家已經(jīng)形成了系列化、批量化、專業(yè)化的生產(chǎn)格局。近幾年來,國內(nèi)各車橋公司引進國外技術(shù)或自主研發(fā)各種重型車橋,有些已被廣泛應用。目前,國內(nèi)車橋市場可謂競爭激烈,比較有知名度的廠家有東風德納車橋有限公司、中國重汽濟南橋箱有限公司,青特集團有限公司、一汽解放汽車有限公司車橋分公司 、陜西漢德車橋有限公司、安徽安凱福田曙光車橋有限公司、山東鵬翔汽車有限公司等主要生產(chǎn)企業(yè)。在以前,國內(nèi)商用車整車生產(chǎn)企業(yè)的發(fā)展戰(zhàn)略是車身必須自己生產(chǎn),發(fā)動機爭取自己生產(chǎn),而車橋一般采用社會資源。然而隨著近些年商用車市場競爭激烈,為了在核心總成上不受制于人,近些年,國內(nèi)一汽解放、東風汽車和中國重汽等主要商用車企業(yè)有的采取投巨資、重兵布局發(fā)展自己的車橋業(yè)務方式,有的采取積極主動與有關(guān)大型車橋生產(chǎn)企業(yè)建立長期戰(zhàn)略聯(lián)盟的方式,以確保自己穩(wěn)定的零部件供應。經(jīng)過市場的洗禮,研發(fā)實力強、產(chǎn)品質(zhì)量優(yōu)異的大廠家將會引領(lǐng)車橋行業(yè)的潮流。隨著汽車行業(yè)的發(fā)展,汽車在節(jié)能、環(huán)保、舒適等方面的性能將顯著提升,這就要求車橋產(chǎn)品的性能進一步提高。車橋作為卡車的核心總成,其總要性也越來越被關(guān)注。在國外,一方面汽車行駛的路況越來越好,平均車速逐漸提高,另一方面節(jié)約能源,減少對環(huán)境的污染意識使得發(fā)動機正向著大轉(zhuǎn)矩和低轉(zhuǎn)速的方向發(fā)展。為適應以上情況,汽車驅(qū)動橋速比應該減小,主減速比小的驅(qū)動橋沒必要采用雙級減速器。因而目前在國外貨車上廣泛的采用的是單級減速驅(qū)動橋,單級驅(qū)動橋具有成本低,質(zhì)量輕,維修保養(yǎng)簡單,傳動效率高,噪音小,溫升低和整車油耗低等優(yōu)點。目前國外技術(shù)比較成熟的單級驅(qū)動橋的生產(chǎn)廠商有美國伊頓(EATON)公司,美國洛克威爾(ROCKWELL)公司,德國蔡夫(ZF) 公司和曼(MAN)公司。31.3 課題的技術(shù)路線(1)總體方案設(shè)計,根據(jù)已給數(shù)據(jù)進行整車性能計算,選擇確定車橋的形式。(2)主減速器雙曲面錐齒輪副設(shè)計,根據(jù)已知的數(shù)據(jù)計算確定主減速器雙曲面錐齒輪的尺寸參數(shù),并用 UG 和 CATIA 三維建模軟件繪制出實體。(3)4 個軸承的選擇,其中兩個是主減速器主動錐齒輪軸的支承軸承,另兩個是主減速器殼的支承軸承,根據(jù)已知數(shù)據(jù)計算,選擇合適大小的軸承,確定軸承的位置和主動錐齒輪軸的尺寸,并設(shè)計合理的預緊裝置,調(diào)整齒輪的嚙合印記,用 CATIA 三維建模軟件造型。(4)主減速器殼設(shè)計,軸承預緊及齒面嚙合印記調(diào)整,由前幾步已知的尺寸確定主減速器殼尺寸,進行主減速器殼支稱軸承預緊和主減速器齒輪嚙合印記調(diào)整,并用CATIA 三維建模軟件繪制實體。(5)半軸計算及設(shè)計(全浮式) ,確定半軸形式,并由已知數(shù)據(jù)計算確定半軸直徑,校核花鍵,用 CATIA 三維軟件繪制半軸。(6)差速器和殼的設(shè)計及驗算,根據(jù)已有零件尺寸,直接確定差速器和殼的尺寸,進行相應的校核,用 CATIA 軟件建模。(7)橋殼設(shè)計及校核,選擇橋殼形式,根據(jù)已有零件尺寸直接確定橋殼尺寸,進行靜強度校核,用 CATIA 繪制橋殼模型。42 總體方案設(shè)計2.1 驅(qū)動橋總成的結(jié)構(gòu)形式選擇驅(qū)動橋在汽車傳動系統(tǒng)的末端,主要由差速器、主減速器、驅(qū)動橋殼和半軸等組成。其功用是:將發(fā)動機傳來的轉(zhuǎn)矩通過主減速器、差速器、半軸等傳到驅(qū)動輪,并減小轉(zhuǎn)速、增大扭矩;通過主減速器錐齒輪副改變扭矩的傳遞方向;通過差速器實現(xiàn)兩側(cè)車輪以不同的轉(zhuǎn)速轉(zhuǎn)彎。驅(qū)動橋總成的結(jié)構(gòu)形式,按其總體布置來說共有三種,普通的非斷開式驅(qū)動橋(見圖 2.1 a)、帶有擺動半軸的非斷開式驅(qū)動橋( 見圖 2.1 b)和斷開式驅(qū)動橋(見圖 2.1 c)。按其工作特性,它們又可分為兩類,即非斷開式驅(qū)動橋和斷開式驅(qū)動橋。 非斷開式驅(qū)動橋通過彈性懸架與汽車車架連接,由于半軸套管與主減速器殼是剛性地連接成一體的,因而兩側(cè)的半軸和驅(qū)動輪不可能在橫向平面內(nèi)作相對運動,因此稱這種驅(qū)動橋為非斷開式驅(qū)動橋,也叫整體式驅(qū)動橋。有些轎車和越野汽車全部或部分驅(qū)動輪采用獨立懸架,就是將兩側(cè)的驅(qū)動輪分別用彈性懸架與車架相連,兩輪可彼此獨立地相對于車架上下跳動。與此相應,主減速器殼固定在車架上。驅(qū)動橋殼應制成分段并通過鉸鏈連接,這種驅(qū)動橋就是斷開式驅(qū)動橋。非斷開式驅(qū)動橋結(jié)構(gòu)簡易,制造工藝性好,成本低,可靠性好,維修調(diào)整方便,廣泛應用于貨車和部分轎車上,但是其懸掛質(zhì)量較大,對降低動載荷和提高平順性不圖 Error! No text of specified style in document1 驅(qū)動橋總體布置形式簡圖5利。斷開式驅(qū)動橋結(jié)構(gòu)較復雜,成本較高。但是,它們與獨立懸架接合起來,對于改善汽車平順性、操縱穩(wěn)定性和通過性有利,所以在轎車和高通過性的越野汽車上應用相當廣泛。本次課題設(shè)計的是某兩噸貨車的后驅(qū)動橋,所以驅(qū)動橋總體形式選擇整體式。2.2 主減速器結(jié)構(gòu)形式的選擇主減速器的功用是增大輸入的轉(zhuǎn)矩并相應降低轉(zhuǎn)速,以及對于縱置發(fā)動機改變扭矩旋轉(zhuǎn)方向。為了順應各種車型和使用要求,主減速器有多種布局形式。根據(jù)主減速器所具有的齒輪副的數(shù)量可以分為單級主減速器(有一對齒輪副)和雙級主減速器(有兩對齒輪副)。而雙級主減速器又可分為整體式和分開式兩種。其中,分開式雙級主減速器的第一級設(shè)于驅(qū)動橋中部(稱為中央減速器) ,而第二級設(shè)于輪邊(稱為輪邊減速器)。當主減速器具有兩個擋位時,稱為雙級主減速器。單級主減速器常由一對圓錐齒輪構(gòu)成。單級主減速器結(jié)構(gòu)較簡單,體積小,質(zhì)量小,成本低,傳動效率高,使用簡便。但是主傳動比不能過大,一般不能超過 7.0。如果進一步提高主減速比,將會增大從動齒輪直徑,從而減小離地間隙,降低汽車通過性,并且會使從動齒輪熱處理復雜化。由于有上述特點,單級主減速器廣泛應用于轎車和輕、中型貨車上。雙級主減速器有兩對齒輪副傳動,與單級主減速器相比,可以在保證離地間隙相同的情況下得到更大的傳動比(7~12) ,但是其尺寸較大,質(zhì)量較大,成本高傳動效率低。雙級主減速器主要用于中、重型貨車、越野車和大客車上。本課題設(shè)計的是某兩噸貨車的后驅(qū)動橋,所以本課題設(shè)計選擇單級主減速器。62.3 主減速器錐齒輪支承形式的選擇2.3.1 主動錐齒輪的支承形式主減速器主動錐齒輪有兩種支承形式,即懸臂式支承(見圖 2.2 a) 、跨置式支承(見圖 2.2 b) 。在懸臂式支承設(shè)計中,圓錐滾子軸承布置得大端向外,以增加支承間的距離 b,并減小懸臂長度 a,這樣可以改善支承剛度。一般要求兩軸承支承間距要比 2.5 倍的懸臂長度還要大。靠近齒輪的軸徑直徑 d 應該不小于懸臂長度 a,懸臂式支承的優(yōu)點是其結(jié)構(gòu)簡單;缺點是支承剛度較差。這種結(jié)構(gòu)主要用于傳遞轉(zhuǎn)矩較小的車橋、輕型貨車的單級主減速器,以及許多雙級主減速器中??缰檬街С械闹С袆偠容^大,可以保證嚙合良好,提高齒輪承載能力,適用于傳遞較大的轉(zhuǎn)矩。本課題設(shè)計所選主動錐齒輪支承形式為懸臂式。2.3.2 從動錐齒輪支承本課題所選從動錐齒輪支承形式為跨置式,如圖 2.3 所示,其中從動錐齒輪固結(jié)于圖 Error! No text of specified style in document2 主動錐齒輪支承圖 Error! No text of specified style in document3 主減速器從動錐齒輪支承7差速器總成,通過一對圓錐滾子軸承支承。在設(shè)計中,圓錐滾子軸承應該布置的大端向內(nèi),以減小支承跨距(圖中 c+d) ,這樣可以增加支承的剛度。另外為了增加支承剛度,一般要在差速器殼上加筋。為了使從動錐齒輪背面的差速器殼處有足夠的位置設(shè)置加強筋,距離 c+d 應該不小于從動齒輪大端分度圓直徑的 70%。2.4 主減速器傳動形式的選擇主減速器的傳動形式主要有:螺旋錐齒輪傳動(如圖 2.4 a 所示) 、雙曲面齒輪傳動(如圖 2.4 b 所示) 、圓柱齒輪傳動(如圖 2.4 c 所示)和蝸桿渦輪傳動(如圖 2.4 d所示) 。螺旋錐齒輪傳動的特點是:零件制造相對簡單,但其工作噪音大 ,對嚙合精度十分敏感,當齒輪副錐頂稍有不吻合,便會使工作條件急劇變壞,從而使磨損加劇,噪聲增大。為保證齒輪副的準確嚙合,必需將軸承預緊,提高支承剛度,增大主減速器殼體剛度。渦輪蝸桿傳動的特點:可以在輪廓尺寸較小、結(jié)構(gòu)質(zhì)量較小的情況下得到較大的傳動比(傳動比可以大于 7) ,工作平穩(wěn)、無聲,適宜把多驅(qū)動橋汽車的驅(qū)動橋布置成貫通式。但是,其傳動效率較低,成本較高,要求采用價格高的材料(渦輪齒圈要求用高質(zhì)量的錫青銅) 。由于有以上特點,蝸桿渦輪傳動僅在生產(chǎn)批量不大的少數(shù)場合得到應用,例如在個別重型多軸驅(qū)動汽車,具有高轉(zhuǎn)速發(fā)動機的大客車以及某些高級轎車上采用這種傳動方式,只有在少量生產(chǎn)時才可以考慮采用這種結(jié)構(gòu)。圖 Error! No text of specified style in document4 主減速器 的傳動形式8圓柱齒輪傳動的特點:圓柱齒輪應用于發(fā)動機縱置的驅(qū)動橋結(jié)構(gòu)當中。雙曲面齒輪傳動的特點:主、從動軸軸線不相交,而是有一偏移距 E,這是與螺旋錐齒輪的差別。由于存在偏移距,使得主動齒輪與從動齒輪的螺旋角不相等,且主動齒輪螺旋角大于從動齒輪螺旋角。雙曲面齒輪一個最大的特點就是當雙曲面齒輪與螺旋錐齒輪的尺寸相同時,雙曲面齒輪傳動有更大的傳動比。從另一個角度說,當傳動比確定且從動齒輪尺寸相同的時候,雙曲面主動錐齒輪比螺旋錐齒輪有較大的直徑,從而有較高的輪齒強度和較大的主動齒輪軸,軸承剛度也大。再從第三個角度看,當傳動比和主動齒輪尺寸一定時,雙曲面從動齒輪直徑比相應的螺旋錐齒輪的小,因而可以增大主減速器殼處的離地間隙。但是,雙曲面齒輪傳動也有缺點,即摩擦較為嚴重。在工作過程中,除了有沿齒高方向的側(cè)向滑動之外,還有延齒長方向的縱向滑動,而這種齒面之間的縱向滑動是雙曲面齒輪傳動所特有的。這種縱向滑動可以改善齒輪的磨合過程,并使其工作安靜平穩(wěn)。但是,它也使摩擦損失增加,從而降低傳動效率。由于這種縱向滑動是隨著偏移距的增大而增大的,所以在設(shè)計中不應該把偏移距選的過大。在工作過程中,雙曲面的齒面間壓力較大、摩擦較大,可能導致破壞齒面之間的油膜,甚至導致齒面燒結(jié)咬死。因此,設(shè)計雙曲面齒輪時要注意潤滑問題,一般采用特殊潤滑油。表 2.1 所示為雙曲面齒輪與螺旋錐齒輪的優(yōu)缺點比較。由于雙曲面齒輪有上述很多優(yōu)點,因此得到了廣泛應用。表 Error! No text of specified style in document1 雙曲面齒輪與螺旋錐齒輪的優(yōu)缺點比較特點 雙曲面齒輪 螺旋齒輪運轉(zhuǎn)平穩(wěn)性 優(yōu) 良抗彎強度 提高 30% 較低接觸強度 高 較低抗膠合能力 較弱 強滑動速度 大 小9效率對安裝誤差的敏感性約 0.98取決于支承剛度和刀盤直徑約 0.99取決于支承剛度和刀盤直徑軸承負荷 小齒輪的軸向力較大 小齒輪的軸向力較小潤滑油 用防刮傷添加劑的特種潤滑油 普通潤滑油根據(jù)設(shè)計要求,本課題選擇的主減速器傳動形式為雙曲面齒輪傳動。2.5 差速器結(jié)構(gòu)形式的選擇當汽車轉(zhuǎn)彎行駛或在不平路面上行駛時,左右驅(qū)動輪滾動的角速度是不相同的,這一功能就是靠差速器來實現(xiàn)的。差速器的種類有很多,包括齒輪式差速器、強制鎖止式差速器、高摩擦自鎖式差速器、牙嵌式自由輪差速器、托森差速器、粘性聯(lián)軸差速器等。本課題設(shè)計的驅(qū)動橋用于公路運輸?shù)妮p型貨車,對越野性要求不高,其差速器不配備防滑轉(zhuǎn)功能。故選擇齒輪式差速器中的對稱式錐齒輪差速器。2.6 半軸結(jié)構(gòu)形式的選擇布置在中央的主減速器若安裝在剛性車橋上,則主減速器和車輪之間用軸來傳動,此軸稱為半軸,半軸必成對出現(xiàn),左右各一個。在非斷開式驅(qū)動橋中,車輪傳動裝置的主要部件是半軸。根據(jù)車輪端的支承方式不同,半軸型式可分為半浮式、3/4 浮式和全浮式三種型式,如圖 2.5 所示。全浮式半袖(如圖 2.5c 所示)的安裝結(jié)構(gòu)特點是:半袖外端通過法蘭盤和車輪輪轂相連,車輪則直接通過兩個軸承支承在橋殼上,而半軸的內(nèi)端用花鍵插在差速器半軸齒輪花鍵孔中。所說的半軸全浮,是指在外界垂直載荷和側(cè)向力作用下半軸不發(fā)生彎曲變形,半軸僅起傳遞轉(zhuǎn)矩的作用。假如沒有半軸,橋殼上有兩個軸承,照樣能支承住汽車車輪,毫無影響,汽車能被推動行駛。所以采用全浮式半軸能提高汽車使用安全性。10(a)半浮式 (b)3/4 半浮式 (c )全浮式圖 2.5 半軸結(jié)構(gòu)類型實際上,一般半軸長度都比較長,由于工藝上的原因,半軸的直徑不可能太小,因此,對于輕型汽車來說,它的強度足夠富裕,若半軸仍用全浮式,半軸的潛力未能充分發(fā)揮。因此可以采用半浮式半軸或 3/4 浮半軸。半浮式半軸(如圖 2.5a 所示)的車輪通過半軸支撐在橋殼上,在外界垂直載荷和側(cè)向力的作用下半軸要發(fā)生彎曲變形。半浮式半軸的支承布置:半軸靠近車輪端處通過一軸承支承在橋殼上,其內(nèi)端通過花鍵支承在半軸齒輪上。這樣,可用簡單的輪轂來代替加工復雜的輪轂,同時也就減輕了重量,半浮式結(jié)構(gòu)一定要確保所選材料、設(shè)計制造及安裝質(zhì)量。否則一旦半軸斷裂,嚴重時會造成車毀人亡。3/4 浮式半軸(如圖 2.5b 所示)結(jié)構(gòu)從外觀上很容易和半浮式半軸混淆,兩者主要區(qū)別在于車輪軸承布置相對于車輪中心平面的位置不同。若車輪中心相對于半軸外端有偏置則為半浮,若偏置距為零就是 3/4 浮了。由于偏置距為零,所以它的單列軸承一定布置在橋殼上,在垂直載荷作用下,半軸的彎曲變形很小,只是受側(cè)向力時半軸才會出現(xiàn)很大的彎曲變形,半軸受力狀況較半浮式大為改善,因此這類半軸是 3/4 浮式半軸。本次課題設(shè)計的驅(qū)動橋用于兩噸貨車,軸荷較大。對車橋的承載能力有一定的要求,需采用橋殼承載。故選擇全浮式半軸。113 主減速器齒輪副設(shè)計3.1 傳動系載荷計算(1)按發(fā)動機最大扭矩與最低檔傳動比確定從動錐齒輪的計算扭矩 ceTmax10kidefceTn??(Error! No text of specified style in document1)式中:k—液力變矩系數(shù),k=1—發(fā)動機最大轉(zhuǎn)矩, =320 N·mmaxeTmaxeT—變速器一擋傳動比, =5.5571i 1i—分動器傳動比, =1fi fi—主減速器傳動比, =5.830i 0i—發(fā)動機到主減速器從動齒輪的傳動效率,對于雙曲面齒輪,取?=0.9—計算驅(qū)動橋數(shù), =1nn—猛接離合器所產(chǎn)生的動載系數(shù),對于一般載貨汽車取 =1 dk dk將數(shù)據(jù)代入公式中得 N·m13205.71.830.9ceT????(2)按驅(qū)動輪打滑扭矩確定從動錐齒輪的計算扭矩 csT2rcsmiηG???(Error! No text of specified style in document2)式中: —滿載狀態(tài)下驅(qū)動橋上的靜載荷, N2G2=6479.8=540g?—最大加速度時后軸負荷轉(zhuǎn)移系數(shù),商用車 =1.1~1.2,取 1.2m? 2?12—輪胎和路面間的附著系數(shù)。對安裝一般輪胎的公路用汽車,在良好的 ?混凝土和瀝青路面上, =0.85。?—車輪滾動半徑(m) , =0.345m(輪胎高寬比按 80%計算)r r—主減速器從動齒輪到車輪之間的傳動比,無輪邊減速器,取 =1im im—主減速器從動齒輪到車輪之間的傳動效率,無輪邊減速器,取 =1? ?將數(shù)據(jù)代入公式得 = N·mCST259401.850.34=9128?(3) 按日常行駛平均轉(zhuǎn)矩確定從動錐齒輪的計算扭矩 cfT(Error! (farcf jf)iη nhmGT??No text of specified style in document3)式中: —汽車滿載總重量, =4.235 9.8 1000=41503NaGa?—車輪滾動半徑(m), =0.345mrr—主減速器從動齒輪到車輪之間的傳動比,無輪邊減速器,取 =1i im—主減速器從動齒輪到車輪之間的傳動效率,無輪邊減速器,取 =1m? ?—驅(qū)動橋數(shù), =1nn—性能參數(shù),取 ,當 時, =0,jfj max0.195f6eGT????????max0.1956e?jf,所以 =0max0.195.4320eGT??jf—公路坡度系數(shù),對于商用車而言, =0.05~0.09,取 =0.08hf hfhf—道路滾動阻力系數(shù),對于商用車而言, =0.015~0.020,取 =0.019r r rf將數(shù)據(jù)代入公式(Error! No text of specified style in document3)得13N·m(0.19cf4153.=.8)=41T??本文選取 和 中的較小值來計算錐齒輪最大應力。計算中所選取的扭矩值為cesT=9128N·m。若進行錐齒輪的疲勞壽命計算,其計算扭矩應取 =1418 N·m。cs cfT3.2 主減速器設(shè)計計算3.2.1 主從動錐齒輪齒數(shù)的選擇為了保證磨合均勻,主、從動錐齒輪的齒數(shù)應避免出現(xiàn)公約數(shù),對于商用車, 一1Z般不小于 6。本次設(shè)計 取 7,根據(jù)主減速比 取 41。1Z2Z3.2.2 從動錐齒輪節(jié)圓直徑及端面模數(shù)的計算節(jié)圓直徑可以根據(jù)經(jīng)驗公式確定,32dcKT?(3.4)式中: —從動齒輪大端分度圓直徑(mm)2d—直徑系數(shù),一般為 13.0~15.3K—從動齒輪的計算轉(zhuǎn)矩(N·m) , =9128N·mcTcT將數(shù)據(jù)代入公式(3.4)得 =(272~320 )mm??321.092518~d?初選 則 =7.32 2d=30smZ?根據(jù) 3smCKT?(3.5)校核 =(0.3 ~0.4) =(6.27~8.36) , 所以 取值滿足條件。s39128sm3.2.3 主從動錐齒輪的齒面寬度計算對于汽車工業(yè),主減速器從動錐齒輪齒寬=0.155 2b2d14(3.6) 將數(shù)據(jù)代入公式(3.6)得 =46.5 mm, =51.1 mm2b1b3.2.4 齒輪的偏移方向的選擇和偏移距計算對于轎車、輕型載貨汽車來說,一般情況下,偏移距 =60mm,E 選擇2E0.d?45mm,雙曲面齒輪的螺旋方向為:主動錐齒輪左旋、從動錐齒輪右旋。主動錐齒輪在從動錐齒輪中心線下方。3.2.5 螺旋角的選擇由于主動錐齒輪與從動錐齒輪為雙曲面齒輪,所以二者的螺旋角并不是一樣的,且主動錐齒輪的螺旋角大于從動錐齒輪,本次設(shè)計初選主動錐齒輪螺旋角 50°,從動錐齒輪螺旋角 30°。3.2.6 法向壓力角的選擇壓力角的選擇與輪齒的強度有關(guān),壓力角越大,輪齒的強度越高。并且能減少齒輪不產(chǎn)生根切的最小齒數(shù)。載貨汽車一般選用 22.5°的壓力角。3.2.7 雙曲面齒輪幾何尺寸計算結(jié)果本文設(shè)計中,運用 Excel 表格編輯計算如表 3.1 所示雙曲面齒輪 150 個結(jié)構(gòu)參數(shù)。具體程序見附件。表 3.1 雙曲面齒輪的結(jié)構(gòu)參數(shù)計算結(jié)果序號 計算公式 計算結(jié)果 注釋1 1z7 小齒輪齒數(shù)應不小于 62 241 由 及主減速比1z確定153 ??210.1707 齒數(shù)比的倒數(shù)4 2b46.5 大齒輪齒面寬5 E 45 小齒輪軸線偏移距6 2d300 大齒輪分度圓直徑7 dr152.4 刀盤名義半徑8 1??45 小齒輪的螺旋角9 tan?1.191810 i2co?0.204911 isn0.979712 ??0.214-6m?R127.2231 大齒輪在齒面寬中點處的分度圓半徑13 ??i51sn2???0.3465 大小輪螺旋角差角正切值14 coi?0.938015 ??1394?1.3510 初定小輪擴大系數(shù)16 221.7210 小輪中點分度圓半徑換算值17 ??1651m?R29.3451 小齒輪在齒面寬16中點處的分度圓半徑18 ??06.12.??RT1.2 輪齒收縮系數(shù)19 7650.3151 近似計算公法線K1K2 在大輪軸線上的投影20 ??195tan??0.0692 大輪軸線在小輪回轉(zhuǎn)平面內(nèi)偏置角正切21 ??20.?1.002422 1sin??0.069023 3.9584 大輪軸線在小輪回轉(zhuǎn)平面內(nèi)偏置角24 ??127-5sin2?? 0.3378 初算大輪回轉(zhuǎn)平面內(nèi)偏置角正切25 2tan?0.358926 ??5t1??0.1924 初算小輪分錐角正切27 1cos0.982028 ??24in7???0.34401729 2cos??0.939030 ??15-9tan8???1.1978 第一次校正小輪螺旋角正切31 ????30-92-0.0021 擴大系數(shù)修正量32 1-0.0004 大輪擴大系數(shù)修正量的換算值33 Sinε1=(24)-(22)-(32)0.3378 校正后大輪偏置角的正弦值34 1tan?0.358935 ??342t1??0.1923 校正后小輪分錐角正切36 110.8872 小齒輪節(jié)錐角37 cos?0.9820 小齒輪節(jié)錐角余弦值38 ??13in7???0.3440 第二次校正后的螺旋角差值的正弦39 1??21.314540 cos?0.931641 ??3840-5tan1???1.2131 第二次校正后小輪螺旋角的正切值42 150.5005 小齒輪中點螺旋18角43 1cos??0.6361 小齒輪中點螺旋角余弦值44 ??39-42?29.1860 大齒輪中點螺旋角45 2cos?0.873046 tan0.558647 ??3cot2??0.204848 2?78.4237 大齒輪節(jié)錐角49 sin0.979750 2co?0.200751 ??371?29.836952 ??52633.981553 ??1?663.8184 兩背錐之和54 4952113.3773 大輪錐距在螺旋線中點切線方向投影55 ??35198.6718 小輪錐距在螺旋線中點切線方向投影1956 ?tan-0.0849 極限齒形角正切負值57 01-48540 極限齒形角負值58 cos?0.996459 ??51640.003560 ??20.000161 ??5411187.146262 61-0.001363 ????2059?0.004864 634-1135.180765 ??dr58??135.6673 齒線中點曲率半徑66 ??671.123367 350 ; 1.-30.03430.829368 ????3751-345; 119.73550.188892069 ??67403?1.013970 519zm?29.229971 ??-2-3.1695 大齒輪節(jié)錐頂點小齒輪軸線距離72 ??491m?A129.8648 在節(jié)平面內(nèi)大齒輪齒面寬中點錐距73 ??4965.0?153.1146 大齒輪節(jié)錐距74 ??72-323.2498 大輪分錐上齒寬之半75 ??2451khgm?9.7526 大齒輪在齒面寬中點處的齒工作高76 ??74610.466377 ??6-4590.655878 i?45 輪齒兩側(cè)壓力角的總和79 sin i 0.707180 ??0.27822.5 平均壓力角81 cosi?0.9239 平均壓力角余弦2182 2tani?0.4142 平均壓力角正切83 ??871.583384 ??2310566.7967 雙重收縮齒齒根角的總和85 aK0.1300 大齒輪齒頂高系數(shù)86 1.150-??851.0200 大輪齒根高系數(shù)87 71.2678 大齒輪齒面寬中點處的齒頂高88 ??05.86?9.9976 大齒輪齒面寬中點處的齒根高89 40.8836 大輪齒頂角90 2sin?0.015491 ??89-5.9132 大齒輪的齒根角92 sin 2?0.103093 ??074?1.6264 大齒輪的齒頂高94 9812.3928 大齒輪的齒根高95 ??5.1. 1.512996 3?14.0192 大齒輪齒全高97 ??9-612.5063 大齒輪齒工作高98 8497.3072 大齒輪的面錐角2299 02sin?0.9826100 co0.1855101 ??91-482r??72.5105 大齒輪的根錐角102 rsin0.9538103 2rco?0.3005104 rt 0.3151105 ??65.093d2??300.6527 大齒輪外圓直徑106 ??7433.8955 大端分度圓中心至軸線交叉點距離107 ??493-106x2?32.3023 大齒輪外圓至小齒輪軸線的距離108 ??987-0.7478 大端頂圓齒頂與分度圓處齒高之差109 ??1028-73.5450 大端分度圓處與根圓處在齒高方向上高度差110 ??8-7z0?-3.9173 大齒輪面錐頂點至小齒輪軸線的距離111 ??1097zr?? 0.3755 大齒輪跟錐頂點至小齒輪軸線的