拉線盤注塑模具設(shè)計(jì)與制造【含CAD圖紙+三維CROE+文檔】
拉線盤注塑模具設(shè)計(jì)與制造【含CAD圖紙+三維CROE+文檔】,含CAD圖紙+三維CROE+文檔,拉線,注塑,模具設(shè)計(jì),制造,cad,圖紙,三維,croe,文檔
XX大學(xué)
畢業(yè)設(shè)計(jì)
文獻(xiàn)翻譯
院(系)名稱
專業(yè)名稱
學(xué)生姓名
指導(dǎo)教師
20xx年 03 月 10 日
注塑模具的智能化設(shè)計(jì)工具
摘 要
注塑成型是一個生產(chǎn)熱塑性塑料制品最流行的制造工藝,而模具設(shè)計(jì)是這個過程的一個重要方面。模具設(shè)計(jì)需要專業(yè)的知識、技能,最重要的是擁有該領(lǐng)域的經(jīng)驗(yàn)。三者缺一不可。生產(chǎn)塑料組件需要選擇恰當(dāng)?shù)哪>撸绻狈ζ渲兄?,這種選擇就得在反復(fù)試驗(yàn)的基礎(chǔ)上進(jìn)行。這會增加生產(chǎn)成本,并造成設(shè)計(jì)上的不一致。
本文介紹了智能模具設(shè)計(jì)工具的發(fā)展。該工具捕獲模具設(shè)計(jì)過程的知識,并且以符合邏輯的方式將這些知識反映出來。所獲得的知識將是確定性的,但模具設(shè)計(jì)過程中的信息是非確定的。一旦開發(fā)了模具設(shè)計(jì)工具,它將指導(dǎo)使用者根據(jù)不同客戶的要求,為其塑料零件選擇合適的模具。
引言
注塑成型工藝過程需要專業(yè)的知識、技能,最重要的是需要它成功的實(shí)踐經(jīng)驗(yàn)。通常是工藝參數(shù)控制過程的效率。在制造過程中,有效地控制和優(yōu)化這些參數(shù)能實(shí)現(xiàn)一致性,這種一致性會在零件質(zhì)量和零件成本上表現(xiàn)出來的問題。
1 智能化工程模塊注塑成型工藝(IKEM)
基于知識的智能化工程模塊的注塑成型工藝(IKEM)是一種軟件技術(shù),它領(lǐng)先于并行工程和CAD / CAM系統(tǒng)。它集成工程的設(shè)計(jì)和制造工藝的最新知識,給用戶各種設(shè)計(jì)方面的指示,通過減少在產(chǎn)品開發(fā)設(shè)計(jì)階段的工程變更,有助于減少一些工時。該系統(tǒng)將用于注塑設(shè)計(jì),設(shè)計(jì)迭代和流程整合。目前的過程由許多手工計(jì)算、CAD圖形結(jié)構(gòu)和從以前項(xiàng)目取得的經(jīng)驗(yàn)三部分組成。一旦工程師完成設(shè)計(jì),這將是性能評估。
該IKEM項(xiàng)目已分為三大模塊。
(1) 費(fèi)用估算模塊
(2) 模具設(shè)計(jì)模塊
(3) 生產(chǎn)模塊
IKEM系統(tǒng)有兩種形式輸入。在一個CAD模型的形式(Pro/E文件)下輸入,和在給出的用戶界面形式下輸入。圖1-1說明了那種進(jìn)入每個模塊的輸入形式和用戶輸出形式。
制造商的經(jīng)驗(yàn)水平將決定如何有效地控制工藝參數(shù)。有時這就導(dǎo)致人為錯誤引起的不一致性。還有經(jīng)驗(yàn)不足,時間、資源短缺和創(chuàng)新的空間不大的情況。通過創(chuàng)造所謂的“智能模型”的問題,工程學(xué)知識提供了一個可行的方案去解決所有這樣的問題。
用戶輸出形式
成本估計(jì)
制造
模架設(shè)計(jì)
用戶輸入形式
語法分析程序
CAD模型
圖1-1 組織工程的IKEM
2 智能模具設(shè)計(jì)工具
在它的基本形式中模具設(shè)計(jì)工具是一個從文本文件中提取輸入的Visual Basic應(yīng)用程序,這種文本文件包含關(guān)于零件和用戶輸入程序。該文本文件包含來自Pro/E的一個信息文件的零件的幾何解析。輸入是用來估測模具得尺寸和其它各種特性。
2.1 文獻(xiàn)回顧
模具設(shè)計(jì)的是另一種注塑成型過程的階段,有經(jīng)驗(yàn)的工程師在很大程度上有助于自動化進(jìn)程,提高其效率。這個問題需要注意的是深入研究設(shè)計(jì)模具的時間。通常情況下,當(dāng)設(shè)計(jì)工程師設(shè)計(jì)模具時,他們會參閱表格和標(biāo)準(zhǔn)手冊,這會消耗大量的時間。另外,在標(biāo)準(zhǔn)的CAD軟件中需要大量的時間去考慮模具的建模組件。不同的研究人員已經(jīng)解決了縮短用不同的方式來設(shè)計(jì)模具所花費(fèi)的時間的問題。凱爾奇和詹姆斯采用成組技術(shù)來減少模具設(shè)計(jì)時間。聚合一類注塑成型件的獨(dú)特的編碼系統(tǒng)和在注射模具中所需的工具已開發(fā),它可以適用于其它產(chǎn)品生產(chǎn)線。實(shí)施編碼系統(tǒng)的軟件系統(tǒng)也已經(jīng)被開發(fā)。通過獲取在這方面領(lǐng)域的工程師的經(jīng)驗(yàn)和知識,嘗試直接使模具設(shè)計(jì)過程的自動化。并行模具設(shè)計(jì)系統(tǒng)的研究開發(fā)就是這樣的一個過程,在并行工程環(huán)境中試圖制定一個系統(tǒng)的注塑模具設(shè)計(jì)流程。他們的研究目標(biāo)是研制一個有利于并行工程實(shí)踐的模具開發(fā)的進(jìn)程,和研制開發(fā)一個以知識為基礎(chǔ)的為注塑模具設(shè)計(jì)提供工藝問題和產(chǎn)品要求的輔助設(shè)計(jì)。
通過各種方式獲取關(guān)于模具設(shè)計(jì)過程的確定信息和不確定信息,研究人員一直試圖使模具設(shè)計(jì)流程自動化。這個研究試圖研制開發(fā)一個獨(dú)特的模具設(shè)計(jì)應(yīng)用程序,它一確定性和不確定性兩種形式獲取信息。
2.2 采用的方法
為了發(fā)展智能模具設(shè)計(jì)工具,傳統(tǒng)的模具設(shè)計(jì)方法在被研究。應(yīng)用程序開發(fā)人員和設(shè)計(jì)工程師合作設(shè)計(jì)一種特定塑料零件的模具。在此期間,被工程師采納用來選擇模底座的方法正在被地密切關(guān)注和篩選過程的各個方面,需要他的知識經(jīng)驗(yàn)來確定。此外,有時候工程師將參考圖表和手冊以規(guī)范其甄選過程。這耗費(fèi)時間的過程,稍后也被記錄在應(yīng)用程序中。
系統(tǒng)的闡述依據(jù)輸入和輸出的應(yīng)用程序是下一階段。這涉及到如何定義什么養(yǎng)的模具布局信息是用戶最需要的,也是他輸入最少卻得到相同的輸出。
根據(jù)在模具設(shè)計(jì)工作中收集到的信息,由工程師遵循的公約被轉(zhuǎn)化為if - then規(guī)則。決策表是用來解釋各種可能出現(xiàn)的情況,它們是當(dāng)處理模具設(shè)計(jì)工程中某一特定的方面所提出的。這樣被制定規(guī)則,然后被組織在相互交融的模塊中,使用應(yīng)用程序開發(fā)環(huán)境。最后,應(yīng)用程序是檢驗(yàn)其正確性,當(dāng)涉及到為塑料零件設(shè)計(jì)模具在工業(yè)生產(chǎn)中。
2.3 選擇合適的模架
通常情況下,為制造塑料零件選擇適當(dāng)?shù)哪<芩婕暗挠校?
(1)估計(jì)模腔數(shù) 模腔數(shù)量的決定取決于在一定時間內(nèi)所需部件的數(shù)量,像機(jī)器的塑化能力,廢品率等問題也會影響到模架的模腔數(shù)量。
(2)確定鑲塊及其尺寸 鑲塊有助于模架重用,因此有助于降低生產(chǎn)成本。當(dāng)涉及到尺寸和數(shù)量的選擇,作出決定取決于現(xiàn)有的鑲塊的重用性和新的鑲塊的成本。
(3)確定澆道的尺寸和定位 澆道的尺寸取決于所成型的材料。盡管還有其它要考慮材料特性來決定它的澆道的尺寸供符合它的流量要求。轉(zhuǎn)輪的定位,取決于所用流道的拓?fù)洳季?。雖然循環(huán)的澆道系統(tǒng)始終是最好的,支道系統(tǒng)的平衡,避免流道均衡補(bǔ)償?shù)臉渲顫驳老到y(tǒng)是一個最被廣泛應(yīng)用的系統(tǒng)。
(4)確定澆道直徑 澆道直徑?jīng)Q定于模具的尺寸,模腔的數(shù)量或在一定的時間內(nèi)用來填補(bǔ)的塑料的總數(shù)。
(5)澆口的定位 塑料在某一點(diǎn)進(jìn)入模腔,在這點(diǎn)可以均勻填充滿模腔。澆口可以設(shè)在循環(huán)模腔的任何周圍點(diǎn),但當(dāng)填補(bǔ)矩形腔時,必須從中部流進(jìn)。
(6)確定供水道的的尺寸和定位 供水道之間和從模具中的任何壁上以標(biāo)準(zhǔn)的距離定位。該公約不是用一個直徑范圍定位水道在模具壁上。
(7)根據(jù)以上結(jié)論確定模具的尺寸 根據(jù)以上的所有結(jié)論,模具的大概尺寸可以被估計(jì),并四舍五入至最接近的產(chǎn)品目錄號。在模架以前,如果重新設(shè)計(jì),考慮到以上所有方面會降低成本和減少設(shè)計(jì)時間,進(jìn)入重新設(shè)計(jì)。
2.4 問題的提出
建立問題,需要人的知識和經(jīng)驗(yàn),模具設(shè)計(jì)方面消耗的時間涉及到圖表,數(shù)據(jù)表等,為開發(fā)應(yīng)用程序的問題解釋如圖2-1所示。雖然大部分的輸入如模腔數(shù)、腔的圖像尺寸、周期時間,都是根據(jù)客戶要求,其他輸入如塑化能力、每分鐘注射量等,可從機(jī)器的說明書中獲得。應(yīng)用程序的輸出包含模具尺寸和其他資料,這顯然有助于在目錄中選擇標(biāo)準(zhǔn)模架。除了輸入和輸出,圖2也顯示了產(chǎn)生的最終輸出的各種模塊。
2.5 制定規(guī)則
在這個階段,專家的知識可以通過多形式的“如果-那么”語句表現(xiàn)出來。這個規(guī)則可以是對定性和定量知識的陳述。所謂定性知識,是指一個能夠解決計(jì)算問題的確定性的信息。所謂定性,是說對于不確定性的信息,而僅僅是作為在以往個案的基礎(chǔ)上的一種已經(jīng)應(yīng)用的規(guī)則。一個典型的規(guī)則說明如下:
輸入
主程序
鑲塊尺寸
模腔圖像維數(shù)
冷水道直徑
周期時間
零件重量
塑化能力
每分鐘注射量
允許時間
模具尺寸
澆道尺寸
模腔數(shù)
輸出
模腔數(shù)
模具尺寸
澆道尺寸
澆口尺寸
冷水道定位
圖2-1 模具設(shè)計(jì)模塊的組織
如果材料=“縮醛”和分流道長度“<= 3, 分流道長度“>0,那么分流道直徑 = 0.062 結(jié)束。
當(dāng)制定了規(guī)則,重要的是我們用一種嚴(yán)謹(jǐn)?shù)姆绞降膩肀憩F(xiàn)這些信息,同時要避免重復(fù)、不完整和不一致的現(xiàn)象。決策表可以幫助處理上述問題,它是通過對過于冗余和廣泛的問題陳述的檢查實(shí)現(xiàn)的。比如說,在選擇適當(dāng)?shù)哪<艿倪^程中,模架尺寸取決于型腔和鑲件的數(shù)目。為確保所有型腔和鑲件都被考慮到,我們使用了決策表,并隨后用決策表來制定規(guī)則。
表2-1 決策表樣本
模腔數(shù)目(1,2,4)
1
1
1
2
2
2
4
4
4
模塊數(shù)目(1,2,4)
1
2
4
1
2
4
1
2
4
模具尺寸
A
*
*
A
B
*
A
B
C
表2-1顯示了在一個以上的情況下,模具的尺寸是相同的。
情況 A:
模具寬度 =(鑲塊長度 + 2);模具長度=(鑲塊長度 + 2);模具厚度=鑲塊厚度。
情況 B:
模具寬度=(2*鑲塊寬度 + 3.5);模具長度=(鑲塊長度+ 2);模具厚度=鑲塊厚度。
情況 C:
模具寬度=(2*鑲塊寬度 + 3.5);模具長度=(鑲塊長度+ 3);模具厚度=鑲塊厚度。
型腔的數(shù)目是一個,鑲件的數(shù)目也是一個的情況和型腔數(shù)目是兩個和四個的情況具有相同的模具尺寸,這三種情況可以歸結(jié)為一個單一的規(guī)則:
如果 鑲塊的數(shù)目= 1,則模具寬度 =(鑲塊寬度 + 2)模具長度 =(鑲塊長度+ 2)模具厚度 = 鑲塊厚度 結(jié)束。
為了方便和清楚起見,用一種標(biāo)準(zhǔn)的編程語言將這些規(guī)則模塊化。每個模塊生成一組輸出,這個輸出又將是對其他模塊的輸入。
2.6 測試應(yīng)用
通過使用各種測試案例對智能模具設(shè)計(jì)中的應(yīng)用程序進(jìn)行了驗(yàn)證。對于每一個案件的零件信息,模具和機(jī)器的信息資料種類繁多,人類專家證實(shí)了把這些信息輸入到應(yīng)用程序的結(jié)果。表2顯示了一個這樣的試驗(yàn),需要兩個模腔,也沒有鑲件的存在。應(yīng)用程序提供近似的模具尺寸,執(zhí)行尺寸,澆口尺寸和亞軍的模腔長度基于模腔圖尺寸和其他信息。
表2-2 典型的測試案例顯示程序的輸入和輸出
輸入
鑲塊數(shù)量
0
鑲塊長度
0
鑲塊寬度
0
鑲塊厚度
0
模腔模樣長度
2.02
模腔模樣寬度
3.28
模腔深度模樣
0.5
冷水道直徑
0.25
零部件生產(chǎn)數(shù)量
1000
時間
6
循環(huán)時間
26
廢品率
0.1
每分鐘注射量
2.3
材料
ABS
輸出
程序輸出
模腔數(shù)
2
模具長度
10.06
模具的寬度
4.02
模具厚度
1.125
澆道直徑
0.109
澆道長度
1.5
最大澆口套直徑
0.218
通過使用各種測試案例對智能模具設(shè)計(jì)中的應(yīng)用程序進(jìn)行了驗(yàn)證。對于每一個案件的零件信息,模具和機(jī)器的信息資料種類繁多,人類專家證實(shí)了把這些信息輸入到應(yīng)用程序的結(jié)果。表2顯示了一個這樣的試驗(yàn),需要兩個模腔,也沒有鑲件的存在。應(yīng)用程序提供近似的模具尺寸,執(zhí)行尺寸,澆口尺寸和亞軍的模腔長度基于模腔圖尺寸和其他信息。
獲得的模具尺寸非常接近人類專家的一個典型設(shè)計(jì),但并沒有明確地說明了一個模具標(biāo)準(zhǔn)件的用途,就像D-M-E模具目錄中的一種特定的模具。模具尺寸是基于所用材料而定的,因此它被限制在一定的范圍。
3 總結(jié)
本文介紹了在發(fā)展智能模具設(shè)計(jì)應(yīng)用中所采用的方法,這種應(yīng)用是根據(jù)用戶輸入進(jìn)行模架選擇的。獲取知識的過程首先是通過與業(yè)內(nèi)專家密切協(xié)商設(shè)計(jì)一種模架,也通過從舊書和數(shù)據(jù)表中收集確定性信息。收集到的資料,表示了在不同的模塊中規(guī)則的排列形式。這些資料可定性和定量地對模具進(jìn)行選擇。決策表是用來減少規(guī)則庫的規(guī)模,使規(guī)則庫中的問題域全面。在不同的模塊中使用這些規(guī)則來開發(fā)應(yīng)用程序,當(dāng)談到在給業(yè)內(nèi)生產(chǎn)的塑件選擇適當(dāng)?shù)哪<軙r就為應(yīng)用程序的有效性作測試。
參考文獻(xiàn)
[1] 錢伯斯 T. L.帕金森 A. R. “知識代表及專家系統(tǒng)的混合轉(zhuǎn)換”美國機(jī)械工程師學(xué)會,1998,120:468-474.
[2] 凱爾其·詹姆斯R.“軟件升壓模具設(shè)計(jì)效率”的成型系統(tǒng),1999, 3:16-23.
[3] 李榮顯,陳育民,鄒昶,“開發(fā)一個并行模具設(shè)計(jì)系統(tǒng):以知識為基礎(chǔ)的辦法”,計(jì)算機(jī)集成制造系統(tǒng),1997,4:287-307.
[4] 斯特德曼薩利·佩爾M,“在工程設(shè)計(jì)專家系統(tǒng):一種注塑成型的塑料件的應(yīng)用”智能制造,發(fā)動機(jī)1995,2:347-353.
[5] 費(fèi)爾南德斯A,卡斯塔尼J,賽爾 F, “CAD / CAE信息的模具和熱塑性塑料注射原型設(shè)計(jì)的”信息技術(shù)1997:117-124.
[6] 道格拉斯M布萊斯,“塑料注射成型,材料選擇和產(chǎn)品設(shè)計(jì)”1997:1-48.
[7] 道格拉斯M布萊斯,“塑料注射成型模具設(shè)計(jì)基礎(chǔ)”,1997,2:1-120.
文獻(xiàn)原文
出處:Submitted to ASME/JDSMC Special Issue on Sensors
Session VA4
Intelligent Mold Design Tool For Plastic Injection Molding
Jagannath Yammada, Terrence L. Chambers, Suren N. Dwivedi
Department of Mechanical Engineering
University of Louisiana at Lafayette
Abstract
Plastic Injection molding is one of the most popular manufacturing processes for making thermoplastic products, and mold design is a key aspect of the process. Design of molds requires knowledge, expertise and most importantly experience in the field. When one of these is lacking, selection of an appropriate mold for manufacturing a plastic component is done on a trial-and-error basis. This increases the cost of production and introduces inconsistencies in the design.
This paper describes the development of an intelligent mold design tool. The tool captures knowledge about the mold design process and represents the knowledge in logical fashion. The knowledge acquired will be deterministic and non-deterministic information about the mold design process. Once developed the mold design tool will guide the user in selecting an appropriate mold for his plastic part based on various client specifications.
Introduction
The plastic injection molding process demands knowledge, expertise and, most important, experience for its successful implementation. Often it is the molding parameters that control the efficiency of the process. Effectively controlling and optimizing these parameters during the manufacturing process can achieve consistency, which takes the form of part quality and part cost.
The level of experience of the manufacturer(s) determines how effectively the process parameters are controlled. This sometimes leads to inconsistency introduced by human error. There is also the case where there is inexperience, shortage of time, resources and little scope for innovation. Knowledge-based engineering provides a feasible solution to all these problems by creating what is called an “intelligent model” of the problem.
1 IKEM
Intelligent Knowledge based Engineering modules for the plastic injection molding process (IKEM) is a software technology that is a step ahead of the concurrent engineering and CAD/CAM systems. It integrates current knowledge about the design and manufacturing processes and helps to reduce several man-hours by reducing engineering changes in the design phase of product development by giving users instruction about various design aspects. The system will be used for injection molding design, design iterations, and process integration. The current process consists of many manual computations, CAD graphical constructions, and experience attained from previous projects. Once the engineer completes the design, it will be evaluated for performance. The IKEM project has been divided into three major modules.
1. The cost estimation module
2. The mold design module
3. The Manufacturing module
Input to the IKEM system is of two forms. Input in the form of a CAD model (Pro-E file) and input given at the User Interface form. Figure 1 illustrates the kind of input that goes into each module and the output given to the user.
Figure 1. Organization of the IKEM Project
2 Intelligent Mold Design Tool
The mold design tool in its basic form is a Visual Basic application taking input from a text file that contains information about the part and a User Input form. The text file contains information about the part geometry parsed from a Pro/E information file. The input is used to estimate the dimensions of mold and various other features.
2.1 Literature Review
Design of molds is another stage of the injection molding process where the experience of an engineer largely helps automate the process and increase its efficiency. The issue that needs attention is the time that goes into designing the molds. Often, design engineers refer to tables and standard handbooks while designing a mold, which consumes lot of time. Also, a great deal of time goes into modeling components of the mold in standard CAD software. Different researchers have dealt with the issue of reducing the time it takes to design the mold in different ways. Koelsch and James have employed group technology techniques to reduce the mold design time. A unique coding system that groups a class of injection molded parts, and the tooling required ininjection molding is developed which is general and can be applied to other product lines.
A software system to implement the coding system has also been developed. Attempts were also directed towards the automation of the mold design process by capturing experience and knowledge of engineers in the field. The development of a concurrent mold design system is one such approach that attempts to develop a systematic methodology for injection mold design processes in a concurrent engineering environment. The objective of their research was to develop a mold development process that facilitates concurrent engineering-based practice, and to develop a knowledge-based design aid for injection molding mold design that accommodates manufacturability concerns, as well as product requirements.
Researchers have been trying to automate the mold design process either by capturing only the deterministic information on the mold design process or the non-deterministic information, in various ways. This research uniquely attempts to develop a mold design application that captures information in both forms; deterministic and non-deterministic.
2.2 Approach Adopted
In order to develop an intelligent mold design tool, the conventional method of designing molds is studied. The application developer and the design engineer work together in designing a mold for a particular plastic part. During this time, the approach adopted by the engineer to select the mold base is closely observed and aspects of the selection process that require his knowledge/experience are identified. Also, there will be times when the engineer will refer to tables and handbooks in order to standardize his selection process. This time consuming process is also recorded to incorporate it later in the application.
Formulating the problem for the application in terms of inputs and outputs is the next stage. This involves defining what information about the mold layout is most required for the user and also the minimum number of inputs that can be taken from him to give those outputs.
Based on the information gathered in the mold design exercise, the conventions followed by the engineer are transformed into if-then rules. Decision tables are used to account for all possible cases that arise when dealing with a particular aspect of the mold design process. The rules so framed are then organized into modules interacting with each other, using an application development environment. Finally the application is tested for its validity when it comes to designing molds for plastic parts manufactured in the industry.
2.3 Selection of Appropriate Mold Base
Typically, selection of appropriate mold base for manufacturing a plastic part involves
Estimating the number of cavities
The number of cavities is decided depending on the number of parts required within a given time. There are also other issues like the plasticizing capacity of the machine, reject rate etc that affect the number of cavities to be present in the mold base.
Deciding on the presence of inserts and their dimensions
Inserts facilitate the reusability of the mold base and therefore help in reducing cost of manufacturing. When it comes to selecting the dimensions and the number, a decision is made depending on the reusability of existing old inserts and cost of ordering new ones.
Determining the size and location of runners
The runner size depends on the material being molded. Although there are other considerations material properties determines the channel size required for its flow. Location of runners mainly depends on the topology of runners being used. Though a circular runner system is always preferable, the branched runner system that avoids runner balancing is the one most widely used.
Determining the diameter of sprue
The diameter of the sprue is decided based on the size of the mold, number of cavities, or the amount of plastic that is to be filled within a given time.
Locating gates
Plastic enters the cavity at a point where it can uniformly fill the cavity. A gate can be located at any point on the perimeter of a circular cavity but has to enter at the midsection when it comes to filling rectangular cavities.
Determining the size and location of water lines
Water lines are located at standard distances form each other and from any wall in the mold. The convention is not to locate a waterline within one diameter range on the mold wall.
Deciding mold dimensions based on above conclusions
Based on all the above decisions the approximate mold dimensions can be estimated and rounded off to the nearest catalog number. Considering all the above aspects before even modeling the mold base reduces the cost and time that go into redesigning.
2.4 Formulation of the Problem
Based on issues that require human knowledge/experience, and aspects of mold design
that consume time referring to tables, data sheets etc., the problem for developing the
application is defined as shown in Figure 2.
Figure 2. Organization of the Mold Design Module.
While most of the input, like the number of cavities, cavity image dimensions, cycle time
are based on the client specifications, other input like the plasticizing capacity, shots per minute etc., can be obtained from the machine specifications. The output of the application contains mold dimensions and other information, which clearly helps in selecting the standard mold base from catalogs. Apart from the input and output, the Figure 2 also shows the various modules that produce the final output.
2.5 Framing rules
At this stage, the expert’s knowledge is represented in the form of multiple If-Then statements. The rules may be representations of both qualitative and quantitative knowledge. By qualitative knowledge, we mean deterministic information about a problem that can be solved computationally. By qualitative we mean information that is not deterministic, but merely followed as a rule based on previous cases where the rule has worked. A typical rule is illustrated below:
If Material = “Acetal” And
Runner Length <= 3 And
Runner Length > 0 Then
Runner Diameter =0.062
End If
When framing the rules it is important that we represent the information in a compact way while avoiding redundancy, incompleteness and inconsistency. Decision tables help take care of all the above concerns by checking for redundancy and comprehensive expression of the problem statement. As an example, in the process of selecting an appropriate mold base, the size of mold base depends on the number of cavities and inserts. To ensure that all possible combinations of cavities and inserts have been considered we use a decision table and subsequently use the decision table to frame rules. Table1 shows more than one case where the mold dimensions are the same.
Table 1. Sample Decision Table
Number of cavities(1,2,4)
1
1
1
2
2
2
4
4
4
Number of Inserts(1,2,4)
1
2
4
1
2
4
1
2
4
Mold Dimensions
A*
*
A
B
*
A
B
C
Case A:
Mold Width = (Insert Width + 2)
Mold Length = (Insert Length + 2)
Mold Thickness = Insert Thickness
Case B:
Mold Width = (2* Insert Width + 3.5)
Mold Length = (Insert Length + 2)
Mold Thickness = Insert Thickness
Case C:
Mold Width = (2*Insert Width + 3.5)
Mold Length = (2* Insert Length+ 3)
Mold Thickness = Insert Thickness
Figure 3. Mold Dimensions for various combinations of Inserts and Cavities
The case where the number of cavities is one and the number of inserts is one has the same mold dimensions as the case where the number of cavities is two and four. The three cases can be reduced to one single rule:
If Number Of Inserts=1 Then
Mold Width = (Insert Width + 2)
Mold Length = (Insert Length + 2)
Mold Thickness = Insert Thickness
End If
The rules are arranged in modular fashion using a standard programming language for the sake of convenience and clarity. Each module generates a set of outputs, which would be inputs for other modules.
2.6 Testing the application
The intelligent mold design application is validated using various test cases. For each case the part information, mold information and the machine information are varied and a human expert validates the results of feeding this info into the application. Table 2 shows one such test case where the part requires two cavities and there are no inserts present.
The application gives the approximate mold dimensions, runner dimension, sprue dimension and runner length based on the cavity image dimensions and other information.
Input
Number of insets
0
Insert Length
0
Insert Width
0
Insert Thickness
0
Cavity image Length
2.02
Cavity image Width
3.28
Cavity image Depth
0.5
Waterline Di
0.25
Number of parts to be produced
1000
Time Available
6
Cycle time
26
Reject Rate
0.1
Shots per minute
2.3
Material
ABS
Output Program
Output
Number of cavities
2
Mold Length
10.06
Mold Width
4.02
Mold Thickness
1.125
Runner Diameter
0.109
Runner Length
1.5
Big end sprue bush diameter
0.218
Table 2. Typical test case showing program input and output.
The mold dimensions obtained are very close to a typical human expert design for the test case but do not suggest explicitly the use of a standard mold base, like a specific mold from the D-M-E mold base catalog. The mold dimensions are however useful in selecting appropriate mold base from the mold catalogs. The runner dimensions are based on the material being used and therefore are limited to a specific range of shot size.
3 Summary
This paper presents the approach adopted towards developing an intelligent mold design application that performs mold base selection based on user input. The knowledge acquisition process is done by first designing a mold base in close consultation with an industry expert and also by collecting deterministic information from hand books and data sheets. The collected information, which can be both qualitative and quantitative knowledge about the mold selection process, is represented in the form of rules arranged in different modules. Decision tables are used to reduce the size of rule base and make the
收藏