壓縮包內(nèi)含有CAD圖紙和說明書,均可直接下載獲得文件,所見所得,電腦查看更方便。Q 197216396 或 11970985
Automated Installation for Modification Surface Properties
of Details and Units of the Metallurgical Equipment
by the Electron Beam Facing
S.I. Belyuk, A.G. Rau, I.V. Osipov*, N.G. Rempe*
Institute of Strength Physics and Materials Science, 2/1 Akademicheskii Ave.,Tomsk, Russia
*Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk, Russia,
Abstract : The electron-beam facing installation is designed for the production of coatings on the surface of metal articles. The coatings have protective, wear-resistive,and heat-resistive properties.The installation is capable of creating coatings on large-area surface with high efficiency.The technological process is automated.
There are two plasma-cathode e-guns in the facing installation. This makes it possible to increase the facing efficiency and productivity. The guns are placed in a vacuum chamber on a two-rectilinear manipulator and can operate simultaneously.
This installation is used in metallurgy for creating wear-resistant coatings on aerial and oxygen lances, on crystallizers of continuous casting of steel, on rolls, etc.
1. Introduction
Electron-beam facing in vacuum [1,2] allows coatings with unique properties to be produced. With this method of coating deposition there is no adhesion problem. The materials which can be treated by this method and the coatings which can be produced on their surfaces are widely diversified. The high repeatability of results in combination with the adaptable control of the technological process make it possible to produce coatings of required structure and preassigned properties.
We have developed an installation intended for deposition of heat and aerial blast-furnace lances with the purpose of increasing their operational durability and also for restoration of various machine parts and metallurgical equipment. It can also be used for welding various metals and alloys, including high-melting ones.
The installation makes it possible to produce mono-and multilayer coatings of various purposes (hardening, wear-resistant, heat-resistant, temperature-resistant, etc.) depending on the composition of the facing powder on the surface of articles made of any metals, steels, and cast iron.
With this installation it is possible to deposit coatings on plane surfaces of workpieces of length up to 2100 mm, width up to 900 mm, and thickness up to 200 mm and on bodies of revolution of diameter up to 1200 mm and length up to 2100 mm.
The technological process of coating deposition is full-automatic.
2. Electron-beam facing
The principle of electron-beam facing is shown in Fig. 1. The electron beam creates a molten metal pool on the surface of the workpiece. The powder whose particles form a coating with required properties on the surface is supplied to the molten metal by a dispenser. The workpiece is moved inside the vacuum chamber relative to the (immobile) e-gun and dispenser or the e-gun with the dispenser are moved relative to the (immobile) workpiece.
Fig.1.
The technology of multipass electron-beam facing is based on the phenomenon of "freezing" a powder into a melt pool. In every subsequent pass, a new portion of the powder is "frozen" and the previous portion is melted. The powder supplied to the pool speeds up the crystallization of the melt, thus promoting the formation of a fine grain structure and moderating the residual stresses in the deposited coating. The required thickness of the deposited layer is obtained by varying the rate of powder supply or by increasing the number of passes.
The process of facing is characterized by the following parameters: the accelerating voltage, the electron beam current, the distance from the focusing system to the surface of the workpiece, the electron beam scanning diameter and length, the velocity of motion of the workpiece, and the rate of powder supply.
3.Electron guns
The facing process is accompanied by intense ejection of vapors and gases from the facing zone. The refore, to produce an electron beam, plasma-cathode guns are used [3, 4]. These guns do not contain hot electrodes or components which would be heated in operation, and this makes them insensitive to reactive and high-melting vapors of the materials under treatment. They are capable of operating under the conditions of facing not taking special measures for protection of the emitter.
Figure 2
Figure 3
The electron emission in the guns occurs from the plasma of a hollow cathode low-voltage reflected discharge [4]. The electrons outgoing from the plasma get in a high-voltage electric field where they are accelerated, collected in a beam, and focused by the magnetic field of the focusing system. The electron emission current from the plasma is controlled by varying the discharge current.
In the design of the guns, metal used whose hermeticity and mechanical strength are provided by electron-beam weding.The gun housings are of in-chamber construction.The design of the housing provides easy and convenient access to the cathode assembly for periodic maintenance. Figure 2 presents the appearance of a gun mounted on the manipulator of the installation.
4. Power supply module
The power supply system of the equipment(Fig.3) consists of an accelerating voltage unit (AVU), a discharge power supply unit (DPU), a beam focusing and deflection control unit (BFDU),and a control unit of the gas flow controller. The units are controlled by a computer via an optical or an RS485 interface.
The accelerating voltage and discharge power supply units are made by the classical circuit design of a bridge inverter with the phase-shift control circuit. In the inverter, the resonance method of switching MOSFET transistors is realized that provides a low level of electromagnetic noise and reduced dynamic losses in switching power transistors. The high
conversion frequency (30 kHz) makes it possible to reduce the output capacitance of the power supplies to 10 nF and to increase the rate of processing of control signals.
Figure 4
The accelerating voltage unit can operate in one of the two modes: stabilization of the accelerating voltage and limitation of the output current. In the first mode, a given accelerating voltage is stabilized as the load current increases from 0 to 150 mA. This is the normal operation of the unit. As the load current increases to more than 150 mA, the accelerating voltage unit goes over to the current limitation mode within 50 s. This makes it possible to protect the load and to prevent the development of an arc discharge in case of breakdown in the electron gun. As the load current decreases, the accelerating voltage unit is back to normal operation. If the load current does not decrease, the unit is switched off for 20-100 m and then returns to normal operation. This algorithm provides fault-free operation in extreme transient and arcing environments.
The discharge power supply unit is a current source with the output voltage ranging between 50 and 1500 V. It operates in the current stabilization mode throughout the output voltage range.Structurally, the accelerating voltage and discharge power supply units are made as two sections: a low-voltage section containing inverters and an oil-filled high-voltage tank in which the output stages are housed (Fig. 4).
The control and stabilization of the beam current are performed by varying the discharge current with a control time constant no more than 0.1 s.
5. Arrangement and operation of the installation
Fig. 5.
Deposition of coatings is carried out in the vacuum chamber of the installation. Two e-guns mounted on the two-rectilinear manipulator are placed in the chamber. The manipulator, providing independent horizontal movement of the guns, is intended for deposition of coatings on large-area plane surfaces. The use of two simultaneously operating guns increases the productivity of the installation. For deposition of coatings on ring surfaces an additional manipulator is used which provides rotation of the workpieces. The appearance of the installation is shown in Fig. 5.
The operation of the vacuum system, the power supply, the movement of the guns, and the technological process are controlled with an automated computer system. The choice of the mode of operation and the monitoring of technological parameters are performed with the help of commercial displays. To change the mode or a parameter, it suffices to press the graphical label of controls on the display with a finger.
The control system can operate in one of the three modes: Vacuum System, E-Gun, and Manipulator.
In the Vacuum System mode, it is possible to switch the pumps on and off and to open and close the valves of the vacuum system. The display shows the readings of the vacuum meters at different points of the vacuum system and the state of the pump cooling system. In this mode, it is possible to program all sequences of switchings of the valves and pumps for automated pumpdown of the vacuum chamber.
Fig.6 Fig.7a
Fig.7b
The power supply of the electron-beam guns is controlled in the E-Gun mode (Fig.6).In this mode, it is possible to control the accelerating voltage,to change the magnitude of the beam current, and to control the gas flow rate and the parameters of the beam scanning over the surface of the workpiece.
The Manipulator mode (Fig. 7, a, b) is intended to control the movement of the workpiece and eguns. Depending on the properties of the workpieces, two modes of operation of the manipulator are possible. For deposition of coatings on large plane surfaces the Manipulator-Plane Body mode(Fig. 7, a) is intended. In this mode, the workpiece is immobile, and two eabove its surface along a prescribed trajectory.
The Manipulator-Body of Revolution mode(Fig. 7, b) is intended for deposition of coatings on axisymmetric surfaces. In this mode, the gun is immobile, and the workpiece is rotated at a certain angle with a given velocity.
Table. Principal characteristics of the installation
Voltage of the supply line, V
3805±5%
Power input, kW
30
Limiting pressure in the vacuum chamber, Pa
10-2
Number of simultaneously operating e-guns
2
Rate of powder supply by the dispenser, g/min.
10-50
Accelerating voltage, kV
up to 30
Beam current, mA
up to 150
Dimensions of the vacuum chamber:
diameter, mm
length, mm
2020
3500
Conclusion
The installation created by us is used on one of the world's largest metallurgical works-the West Siberian Iron and Steel Plant-for deposition of wear-resistant coatings on aerial and oxygen lances,on crystallizers of continuous casting of steel, and on rolls.
References
[1]V.E. Panin, S.I. Belyuk, V.G. Durakov, G.A. Pribytkov, and N.G.Rempe, Svarochnoe Proizvodstvo, 2, 34 (2000).
[2]V.E. Panin, V.G. Durakov, G.A. Pribytkov,I.V.Polev, and S.I.Belyuk, Fizika i Khimia Obra
botki Materialov, 6, 53 (1998).
[3]V.L. Galansky, V.A. Gruzdev, I.V. Osipov, and N.G. Rempe, J. Phys. D: Appl. Phys., 27, 953(1994).
[4]I. Osipov and N. Rempe, RSI, 1, 1638 (2000).
用電子束車削改善冶金設(shè)備零部件表面特性的自動裝置
S.I. Belyuk, A.G. Rau, I.V. Osipov*, N.G. Rempe*
能量物理和材料科學(xué)學(xué)院,2/1 Akademicheskii Ave.,Tomsk, Russia
湯姆斯卡雅斯州立大學(xué)的控制系統(tǒng)和無線電子學(xué),
40 Lenin Ave., Tomsk, Russia,
摘要:電子束車削裝置是為金屬物件表面涂料的生產(chǎn)而設(shè)計(jì)的。涂料具有磨損保護(hù)和熱保護(hù)的性能。該裝置具有在大面積表面高效率制造涂料的能力。這個工藝流程是自動的。
在該車削裝置中有兩個陰極等離子體電子槍。這有可能增加車削效率和生產(chǎn)率。這使提高車削效率和生產(chǎn)率成為可能。這兩個電子槍被安裝在一個正交垂直機(jī)械手上的真空腔內(nèi),并且可以同時運(yùn)行。
該裝置用于生產(chǎn)冶金中用在空氣噴槍、鋼連鑄晶體、輥碎機(jī)等上的耐磨涂料。
1 簡介
在真空狀態(tài)下的電子束車削,允許生產(chǎn)具有獨(dú)特性質(zhì)的涂料。用該方法的涂料沉積無粘連問題。用這種方法生產(chǎn)的材料和在這些材料表面生產(chǎn)的涂料具有廣泛的多元化。與工藝流程適應(yīng)能力控制結(jié)合的結(jié)果的高重復(fù)性,使生產(chǎn)滿足規(guī)定結(jié)構(gòu)和預(yù)期性能成為可能。
為了增加熱空氣鼓風(fēng)爐噴槍操作耐久性,我們?yōu)槠涑练e作用和各種機(jī)械零件和冶金設(shè)備的恢復(fù)開發(fā)了一套裝置。同樣該裝置可以被用于各種金屬和合金的焊接,包括高熔點(diǎn)金屬。
單層和多層涂料用于各種根據(jù)由各種金屬、鋼和鑄鐵組成的制品表面的切屑的組成的用途(硬化、耐磨、耐熱、耐高溫等),該裝置是生產(chǎn)此類型涂料成為可能。
用該裝置可以在最長為2100mm、最寬為900mm、最厚為200mm的飛機(jī)工件和直徑最大為1200mm,最長為21mm的回轉(zhuǎn)體工件表面上沉淀上涂料。
涂料沉淀的工藝流程是全自動的。
2 電子束車削
電子束切削的原理見圖1。電子束在工件表面建立一個熔融金屬池。在該表面上,來自具有需求特性的涂料的粉末顆粒由分配器提供給熔融金屬。工件在真空室內(nèi)相對于電子槍(固定的)和分配器是移動的,或電子槍和分配器相對于工件(固定的)在移動。
多工序電子束切削技術(shù)是以凍結(jié)一個粉末進(jìn)熔融金屬池的現(xiàn)象為基礎(chǔ)的。在每一個后續(xù)的工序,粉末的一個新部分是“凍結(jié)”的,以前的部分是融化的。供應(yīng)給融池的粉末加速了金屬的結(jié)晶作用,從而促進(jìn)了細(xì)粒結(jié)構(gòu)的形成和緩解涂料中的殘余應(yīng)力。所需沉積層的厚度通過改變粉末供應(yīng)的速率或通過增加工序的數(shù)量來獲得。
這個切削的過程以下列參數(shù)為特征:加速電壓、電子束電流、調(diào)焦系統(tǒng)到工件表面的距離、電子束掃描直徑和長度、工件運(yùn)動速度和粉末供應(yīng)速率。
圖1 電子束切削原理
3 電子槍
切削過程伴隨著從切削層噴出的強(qiáng)烈的蒸汽和氣體。因此,真空腔內(nèi)的電子槍被用來產(chǎn)生電子束。這些電子槍不含有在運(yùn)行中被加熱的熱電極或組件,并且這使得它們反應(yīng)遲鈍和在處理下的材料的高熔點(diǎn)蒸汽。它們可以在對發(fā)射器不使用特殊保護(hù)措施的切削條件下運(yùn)行。
電子槍中的電子發(fā)射產(chǎn)生于空心腔低電壓反射放電的等離子體。從等離子體中發(fā)出的電子在高壓電場加速、匯聚成束和在調(diào)焦系統(tǒng)磁場中聚焦。來自等離子體的電子發(fā)射電流由不同的放電電流控制。
在電子槍的設(shè)計(jì)中,利用其密封性和機(jī)械強(qiáng)度的金屬均采用電子束焊接。電子槍的外殼均為內(nèi)腔結(jié)構(gòu)。這種外殼設(shè)計(jì)為陰極的定期維護(hù)提供了方便。圖2呈現(xiàn)了一個裝在該裝置機(jī)械臂上的電子槍的外觀。
圖2 該裝置機(jī)械臂上的電子槍
4 電源模塊
圖3 該設(shè)備的供電系統(tǒng)
該設(shè)備的供電系統(tǒng)(圖3),包括一個加速電壓單元(AVU),發(fā)射電源供電單元(DPU)、一個電子束聚焦和偏移控制單元(BFDU)和一個氣流控制器的控制單元。這個單元是由計(jì)算機(jī)經(jīng)由一個光學(xué)或一個RS485接口控制的。
加速電壓和發(fā)射電源供電單元是由帶相位控制回路的橋變換器這一經(jīng)典電路構(gòu)成的。在變換器中,開關(guān)MOSFET晶體管這一共振法實(shí)現(xiàn)了提供一個低電平電噪聲和降低在開關(guān)電源晶體管的動態(tài)損失。高變換頻率能夠?qū)⒐╇婋娫摧敵鲭娙萁档偷?0nF和增加控制信號的處理速度。
加速電壓單元可以在兩個模式下運(yùn)行:加速電壓的穩(wěn)定性和輸出電流的有限性。在第一個模式下,當(dāng)負(fù)載電流從0增加到150mA的過程中,給定的加速電壓是穩(wěn)定的。這是該單元的正常運(yùn)行。當(dāng)負(fù)載電流增加到超過150mA時,加速電壓單元在50s內(nèi)穿越電流極限模式。這使得它能夠保護(hù)負(fù)載和防止電子槍故障時產(chǎn)生電弧放電。當(dāng)負(fù)載電流減小時,加速電壓單元恢復(fù)正常運(yùn)行。如果負(fù)載電流不減少,該單元關(guān)斷20-100ms,然后恢復(fù)正常運(yùn)行。該算法在極端瞬態(tài)提供無故障運(yùn)行和弧電環(huán)境。
放電供電電源單元是一個輸出電壓范圍為50V-1500V的電流源。它運(yùn)行在貫穿整個輸出電壓范圍內(nèi)的電流穩(wěn)定模式。從結(jié)構(gòu)上來講,加速電壓和放電供電單元被做成兩個部分:一個低壓區(qū)包含了變換器和一個充滿油狀物的高壓蓄電池,其輸出級是被封裝的(圖4)。電子束電流的控制和穩(wěn)定由控制時間常數(shù)不超過0.1s的不同放電電流執(zhí)行的。
5 裝置的布置和操作
涂料的沉淀是在該裝置的真空腔內(nèi)進(jìn)行的。安裝在正交垂直機(jī)械手上的兩個電子槍被放置在真空腔內(nèi)。為電子槍提供獨(dú)立橫向運(yùn)動的機(jī)械手是專門用于大面積飛機(jī)表面涂料的沉淀。兩個同時運(yùn)行的電子槍的使用提高了該裝置的生產(chǎn)率。為了在環(huán)形面上沉淀涂料,使用一個額外的機(jī)械手為工件提供旋轉(zhuǎn)。該裝置的外觀見圖5.
圖5
真空系統(tǒng)的運(yùn)行、供電、電子槍的運(yùn)動,工藝流程是由自動化的計(jì)算機(jī)系統(tǒng)控制的。運(yùn)行
圖6 圖7a
圖7b
模式的選擇和工藝參數(shù)的監(jiān)測是通過工業(yè)顯示器的幫助執(zhí)行的。用手指點(diǎn)擊顯示器上的圖形控件可以去改變模式和參數(shù)。
該控制系統(tǒng)可以運(yùn)行于三種模式:真空系統(tǒng)、電子槍、機(jī)械臂。
在真空系統(tǒng)的模式,可以起動和關(guān)停泵,開啟和關(guān)閉真空系統(tǒng)的閥。顯示器顯示在該真空系統(tǒng)的不同點(diǎn)的真空表的讀數(shù)和泵冷卻系統(tǒng)的狀態(tài)。在這種模式下,為真空腔的自動降壓可以預(yù)先確定閥門和泵的開關(guān)順序。
電子束槍的電力供應(yīng)是在電子槍模式控制的(圖7)。在這種模式下,可以控制加速電壓、改變電子束電流的大小、和控制氣流速率和掃描工件表面的電子束的參數(shù)。
機(jī)械手模式(圖7a,b)是用來控制工件和電子槍的運(yùn)動的。根據(jù)工件的性質(zhì),機(jī)械手的兩種操作模式都是可能的。機(jī)械手-飛機(jī)體模式用在大型飛機(jī)表面涂料的沉淀(圖7a)。在這種模式下,工件不動,兩個電子槍在其表面同時沿著規(guī)定的軌跡移動。
機(jī)械手旋轉(zhuǎn)模式用在軸對稱表面涂料的沉淀。在這種模式下,電子槍是不動的,工件以某一角度和給定的速度旋轉(zhuǎn)。
表1 該裝置的主要特點(diǎn)
供應(yīng)管的電壓,V
3805±5%
輸入功率,KW
30
真空腔壓力極限,Pa
10-2
同時運(yùn)行的電子槍的數(shù)目
2
分配器供應(yīng)粉末的速率,g/min
10-50
加速電壓,KV
up to 30
電子束電流,mA
up to 150
真空腔的規(guī)格:
半徑,mm
長度,mm
2020
3500
結(jié)論
我們制造的該裝置用在世界上最大的冶金工程-西方的西伯利亞鋼鐵工廠,為了空氣噴槍、鋼連鑄晶體和輥碎機(jī)上耐磨涂料的沉淀。
參考文獻(xiàn)
[1] V.E. Panin, S.I. Belyuk, V.G. Durakov, G.A. Pribytkov, and N.G.Rempe, Svarochnoe Proizvodstvo, 2, 34 (2000).
[2] V.E. Panin, V.G. Durakov, G.A. Pribytkov,I.V.Polev, and S.I.Belyuk, Fizika i Khimia Obra
botki Materialov, 6, 53 (1998).
[3] V.L. Galansky, V.A. Gruzdev, I.V. Osipov, and N.G. Rempe, J. Phys. D: Appl. Phys., 27, 953(1994).
[4] I. Osipov and N. Rempe, RSI, 1, 1638 (2000).
13