購(gòu)買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無(wú)水印,可編輯。。。具體請(qǐng)見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
中文譯文
汽車復(fù)合材料懸架擺臂的實(shí)驗(yàn)分析
M.PINFOLD 和 G.CALVERT
(University of Warwick / Rover Group Gaydon,UK )
摘要:減輕汽車自重和簡(jiǎn)化零件能獲得應(yīng)用,羅孚公司開始研究復(fù)合材料零件的設(shè)計(jì)與制造。在大規(guī)模的汽車工業(yè)中,從設(shè)計(jì)到制造的各個(gè)環(huán)節(jié)中,較多的是針對(duì)鋼件,對(duì)于復(fù)合材料零件尚未有很好的研究。復(fù)合材料的基本研究方法已經(jīng)出現(xiàn),其中最重要的是有限元技術(shù),同樣可以通過(guò)對(duì)原型的光彈性分析和應(yīng)變測(cè)量模式及傳統(tǒng)應(yīng)變檢測(cè)來(lái)提高效果。這些少量的工作已經(jīng)可以把結(jié)果聯(lián)系起來(lái),這些結(jié)果中包含了不同的測(cè)試方法,并且采用了基于實(shí)際結(jié)果的測(cè)試手段來(lái)加以比較。這篇文章闡述了一些關(guān)于汽車懸架臂的分析與測(cè)試。應(yīng)用三種不同的分析技術(shù)得到的結(jié)果,與實(shí)驗(yàn)測(cè)試進(jìn)行比較,并對(duì)它們的準(zhǔn)確性進(jìn)行了討論。
關(guān)鍵詞:汽車的懸架擺臂、應(yīng)力分析、有限元分析、光彈性分析、SPATE、應(yīng)變測(cè)量、模壓塑料板材
Sol和dewilde 1 闡述過(guò)復(fù)合材料已經(jīng)迅速地成為一種結(jié)構(gòu)材料。原因是復(fù)合材料具有高強(qiáng)度和高硬度,這些性質(zhì)可以降低結(jié)構(gòu)的重量。也許復(fù)合材料最重要的特征是它們的力學(xué)性質(zhì)可以“配置的”,以此來(lái)滿足特殊的要求。然而,約翰遜等2說(shuō)明了在復(fù)合材料在用于轎車和卡車之前,它的設(shè)計(jì)、分析和制造技術(shù)仍需要重點(diǎn)的開發(fā)和成功的論證。
復(fù)合材料不得不在工程領(lǐng)域與鋼材相競(jìng)爭(zhēng)。在汽車工業(yè)中需要有相關(guān)的部門來(lái)轉(zhuǎn)換某些技術(shù)就像華威大學(xué)的先進(jìn)技術(shù)中心,該中心擁有材料學(xué)家、汽車工程師,他們致力于研究復(fù)合材料以此來(lái)替代像鋼這種傳統(tǒng)材料,這就要求汽車設(shè)計(jì)者需要充分掌握材料的強(qiáng)度和局限性。只有這樣他們才能在概念設(shè)計(jì)階段從眾多的可選方案中選擇其一。對(duì)于這些問題需要汽車工程師們?cè)谠O(shè)計(jì)、測(cè)試以及零部件的制造當(dāng)中掌握復(fù)合材料的性質(zhì),及其多種分析方法。例如:有限元分析、SPATE和光彈性分析。這些分析方法在復(fù)合組合體的設(shè)計(jì)與開發(fā)中得到應(yīng)用。
這樣少量的工作似乎完成了研究過(guò)程,但這些結(jié)果是否包括:通過(guò)各種分析方法找出相互見的關(guān)系或者通過(guò)測(cè)試實(shí)際的組合體得到實(shí)際的實(shí)驗(yàn)結(jié)果。為了研究用復(fù)合式組合體表示的汽車下懸架臂,采取了不同的分析方法,從而找出這些方法的適用范圍及其相互關(guān)系。這個(gè)復(fù)合組合體在現(xiàn)實(shí)受載情況下通過(guò)三種方法分析,而且實(shí)驗(yàn)的結(jié)果中包含了應(yīng)變測(cè)量。
Anti-Roll Bar Mounting
(防側(cè)傾穩(wěn)定桿連接)
Ball Joint Housing
(球鉸窩)
Body Mounts
(車身安裝連接)
設(shè)計(jì)
原先的鋼制下懸架臂由9塊組件焊接在一起的,然而重新設(shè)計(jì)的復(fù)合材料組件 如圖1.它是一個(gè)獨(dú)立的模壓零件,用來(lái)制造懸架臂的材料是模壓塑料板材材料它是聚酯樹脂粘合劑加上30%含量的不規(guī)則排列的短玻璃纖維,以及碳酸鈣填料。鋼制懸架臂質(zhì)量為2.53千克,然而重新設(shè)計(jì)的用模壓塑料板材材料制成的懸架臂,就算把襯套和球節(jié)的質(zhì)量加到一起總質(zhì)量也不過(guò)為1.5千克。組合懸架臂材料的性質(zhì)在這些分析中可以得出,測(cè)試在羅孚材料實(shí)驗(yàn)室已完成,得出如下的選擇:楊氏模量=10.5Gpa ,泊松比=0.26 ,密度=1.8×10-6 kg/mm-3.
實(shí)驗(yàn)技術(shù)
先前承擔(dān)實(shí)驗(yàn)分析的是一種實(shí)際的工程零件。當(dāng)采用模壓塑料板材時(shí),最初的一些有效工作需要有足夠的技術(shù)條件來(lái)支撐。因此,平板、橫桿和圓盤由模壓塑料板材制成時(shí),那么要在設(shè)計(jì)部件工作之前就要加載各種不同的條件來(lái)分析它們。
大部分有效的測(cè)試要通過(guò)應(yīng)變測(cè)量及其有限元分析。盡管模壓塑料板材不是一種均質(zhì)材料,它在生產(chǎn)工藝中由一些纖維定位,但為了分析這種材料我們要假設(shè)它是均質(zhì)材料。同樣,用模壓塑料板材制成的懸架臂已經(jīng)被離散化,主要的纖維分布在加強(qiáng)肋處,分析實(shí)驗(yàn)結(jié)果之間的聯(lián)系會(huì)發(fā)現(xiàn)這個(gè)假設(shè)是可行的。
應(yīng)變測(cè)量
在著手做實(shí)驗(yàn)測(cè)試任務(wù)之前,復(fù)合組件是由它的橡膠安裝襯套安裝在一個(gè)相對(duì)堅(jiān)固的結(jié)構(gòu)上。由于很難考慮到各種條件在做實(shí)驗(yàn)時(shí)要假設(shè)處于最壞的情況下,最壞的情況是在加載“pot-hole制動(dòng)”時(shí)。這個(gè)實(shí)驗(yàn)是試圖模擬汽車以30mph的速度突然進(jìn)入此狀態(tài),此時(shí)制動(dòng)器完全處于沖擊點(diǎn)上。這個(gè)時(shí)候的合力和橫向載荷的計(jì)算是以汽車的重量和速度來(lái)測(cè)算的。全部的pot-hole加載是不可能完全作用于零件的,還有由于pot-hole加載的應(yīng)用以及結(jié)果的換算,這會(huì)導(dǎo)致作用在同一方向上的載荷減少。在全部pot-hole制動(dòng)情況下,載荷作用在“x”方向?yàn)?4.2 KN,在“y”方向上是8.2 KN輕載荷時(shí)“x”方向是5.9KN,在“y”方向上是2.02KN 如圖1.
應(yīng)變儀由6個(gè)坐標(biāo)多片組合式應(yīng)變片和13個(gè)2.5mm長(zhǎng)的單極應(yīng)變片組成。要選擇合適的組件半徑,這樣才能測(cè)得最大的應(yīng)變值。應(yīng)變片放在球節(jié)附近,因?yàn)檫@個(gè)位置受到載荷,還要將應(yīng)變片放在車身安裝連接襯套的內(nèi)壁上,因?yàn)橹@個(gè)位置是聯(lián)接懸架臂與副車架的。其余的應(yīng)變片放在加強(qiáng)肋和防側(cè)傾穩(wěn)定桿連接安裝位置的附近。
SPATE分析
SPATE常用作確定零件的表面應(yīng)力,通過(guò)研究在周期性載荷條件下零件溫度的細(xì)小變化,而得出其所受的應(yīng)力值。SPATE設(shè)備包括:一個(gè)帶有掃描探頭的檢測(cè)裝置,一個(gè)模擬信號(hào)處理裝置和一個(gè)數(shù)字式電子信息裝置。整個(gè)系統(tǒng)的工作原理是這樣的,當(dāng)一個(gè)結(jié)構(gòu)受到周期性載荷時(shí),該系統(tǒng)可以檢測(cè)出一瞬間此結(jié)構(gòu)的溫度變化。紅外線探頭可以掃描此結(jié)構(gòu),并且可以從受載系統(tǒng)中測(cè)出參考信號(hào)的輸出值。數(shù)字式電子信息裝置通過(guò)參考信號(hào)可以檢測(cè)出感應(yīng)應(yīng)力的熱偏差量。此時(shí)一種彩色的輪廓曲線圖繪出,圖顯示出此時(shí)主應(yīng)力(δ1+δ2)之和,同時(shí)直方圖也顯示出有用的數(shù)值。信號(hào)的這個(gè)相互關(guān)系有效地去除了其它不同的受載系統(tǒng)信號(hào)的頻率。例如,周圍介質(zhì)的溫度。SPATE系統(tǒng)的溫度分辨力達(dá)到0.001°C,空間分辨力小于1mm。
這種分析已經(jīng)得到一些作者3-16的驗(yàn)證,并且已經(jīng)用于非均質(zhì)材料,如復(fù)合材料,并且從這樣的研究中比較理論的或有限元分析的結(jié)果,以此可以確定一些少量的錯(cuò)誤(~6%),這些少量的錯(cuò)誤是由于在材料數(shù)據(jù)的使用上不準(zhǔn)確4。很明顯研究熱彈性應(yīng)力的分析,以此來(lái)評(píng)估各向異性的復(fù)合材料,這種材料比均質(zhì)的材料更復(fù)雜化。然而,這項(xiàng)技術(shù)能提供許多有用的信息,諸如:應(yīng)力分布、表面檢測(cè)效果和裂縫增長(zhǎng)預(yù)測(cè)信息。它可以確定已給正確的、詳細(xì)的材料特性以及依賴材料各向異性程度的定性結(jié)果,包括:膨脹系數(shù)。
先前是對(duì)懸架臂進(jìn)行了全面的SPATE分析,這個(gè)分析是要確定用于實(shí)驗(yàn)的材料的校準(zhǔn)系數(shù)。有兩種方案可以測(cè)得系數(shù),一是在材料的盤形的任一邊加載壓力并且與采用理論方法產(chǎn)生的SPATE輸出值相比較得出系數(shù),或者通過(guò)應(yīng)變儀直接測(cè)出零件在均勻區(qū)域的應(yīng)力分布,從而直接獲得與SPATE輸出值的比值。雖然在這種情形下以上兩種方法才適用,但通過(guò)應(yīng)變儀直接校準(zhǔn),以便解決眾多問題。這樣的話從SPATE輸出的數(shù)值中可以獲得重要的信息。
光彈性分析
大多數(shù)光彈性分析研究是用來(lái)檢查復(fù)合材料在受宏觀力作用后的效果的。它是采用光彈性涂層技術(shù)來(lái)分析其作用效果的。這樣做是為避免構(gòu)建復(fù)雜的各向異性的光彈性模型,并且這樣構(gòu)建的組合體失去了透明度以至不能分析。然而,對(duì)于復(fù)雜纖維層,只有一種方法來(lái)處理光彈性分析并且這樣的一些研究已經(jīng)用于復(fù)合材料的研究17-30。從那樣的分析中可以得到合理的結(jié)論,但這種分析要求材料有必須的透明度。可是復(fù)合組合體要采用這種研究方法,因此從模壓塑料板材和假設(shè)的均質(zhì)材料中來(lái)制造,那么將會(huì)簡(jiǎn)化光彈性模型的構(gòu)建。
為了進(jìn)行光彈性分析,需要構(gòu)建懸架臂的一個(gè)三維的環(huán)氧樹脂模型。該模型以典型的方式按比例縮小,并且受到循環(huán)的“應(yīng)力點(diǎn)”的作用。在這種溫度下楊氏模量發(fā)生了變化,而且模型在此條件下已變形。為了避免不均勻溫度引起的熱應(yīng)力,此模型需要慢慢冷卻。在冷卻循環(huán)中模型的變形與所受的應(yīng)力限制了該模型。在偏振光下觀察三維模型是不規(guī)則的邊的堆砌。為了確定在任一點(diǎn)上主應(yīng)力的大小和方向,切片在偏振光下檢測(cè)時(shí)需要清理。通過(guò)計(jì)算模型的應(yīng)力干涉邊紋的數(shù)量,可以算出并轉(zhuǎn)換為組件的實(shí)際受載情況。這樣做可以算出模型和組件材料之間的比值,以及載荷和空間參數(shù)之間的比值。
下懸架臂通過(guò)橡膠安裝襯套安裝在車架上的,至于模擬這些安裝襯套的合理性已經(jīng)展開研究。然而實(shí)驗(yàn)用的硅和泡沫橡膠處于高溫環(huán)境中時(shí),襯套的硬度會(huì)降低,不能保持其工作狀態(tài)。這樣的話光彈性分析要假設(shè)懸架臂是整體安裝的。
有限元分析
模型化的復(fù)合式懸架臂用了大約1300 STIF45 ANSYS 實(shí)體元件,懸架臂通過(guò)橡膠安裝襯套安裝在副車架上,可以模擬出彈性元件襯套所表示出的剛性,還可以模擬出真實(shí)的受載零件。有限元模型通過(guò)在球節(jié)處的發(fā)光元件來(lái)進(jìn)行模擬受載。
三種加載情況是用ANSYS 有限元分析軟件來(lái)分析的。第一種情況是模擬全pot-hole 制動(dòng)載荷。第二種情況由于測(cè)試設(shè)備的局限在模擬輕載荷是得到的數(shù)值要與用測(cè)量得到的數(shù)值比較。以上兩種情況都是用彈性元件來(lái)模擬橡膠安裝襯套的剛性。第三種情況還是輕載,但是這次省略了彈性元件。就像模擬化的懸架臂要實(shí)體安裝一樣,第三種情況需要有SPATE和光彈性分析它們之間的相互關(guān)系。
結(jié)論
1.有限元分析
懸架臂的分析表明了在受載情況下組件的最大等應(yīng)力非常接近在pot-hole情況下所給材料的最大抗拉強(qiáng)度。這意味著組件要采用不同的材料來(lái)加工,或者在組件受高強(qiáng)度應(yīng)力的位置采用其余的材料。由于電腦磁盤空間的限制,在有限元模型中所用的一些元件相對(duì)來(lái)說(shuō)較少,并且在整個(gè)安裝襯套范圍內(nèi)所使用的元件的尺寸由于太大了,以至于不能檢測(cè)任何密集的應(yīng)力。另外,鑒于組件的幾何結(jié)構(gòu)、混合磚、以及四面的邊,這些使得多種元件在這些位置上趨于剛性。以至于得不到好的或者是不推薦使用的結(jié)果,那么就不得不需要在這些高應(yīng)力梯度區(qū)域模擬出更小的元件。
2.光彈性分析
假設(shè)用于光彈性分析的懸架臂模型通過(guò)在前后方向上加載,使得最大應(yīng)力分布在水平面上。雖然在實(shí)際中,由于特定區(qū)域的幾何形狀的影響使得上述結(jié)果嚴(yán)格來(lái)說(shuō)并不是十分正確,但是假設(shè)也是建立在大量準(zhǔn)確的結(jié)果之上的。如果在特定區(qū)域內(nèi)有明顯的偏差,那么可能是由于不同平面上的切片所引起的。最大應(yīng)力發(fā)生在球鉸窩和車身安裝連接附近。
因?yàn)楣鈴椥苑治瞿芫_定位在微小區(qū)域上的高應(yīng)力,所以通過(guò)光彈性分析得到的最大應(yīng)力比用應(yīng)變測(cè)量?jī)x測(cè)得的最大應(yīng)力要大。例如:最大應(yīng)力水平分布于前車身安裝連接上,最大值可達(dá)43MP其數(shù)值大于用SPATE測(cè)得的26MP。通過(guò)檢查光彈性模型的切片可以解釋以上兩者的差別,檢查結(jié)果顯示,最大應(yīng)力僅產(chǎn)生跨度在3mm左右的位置上,而且應(yīng)力在跨度兩邊上應(yīng)力都在25MP左右。
3.SPATE分析
最初的SPATE檢測(cè)能測(cè)出位于安裝位置以及一些張緊力或者壓力混合的位置。因?yàn)橄鹉z安裝襯套在應(yīng)變測(cè)量?jī)x測(cè)試時(shí)已發(fā)生了變形,所以要找出關(guān)于有關(guān)懸架臂、車身安裝連接臂位置移動(dòng)所引起的問題。如果有必要SPATE可以裝上運(yùn)動(dòng)補(bǔ)償裝置,它可以及時(shí)地用檢測(cè)裝置中的掃描鏡來(lái)偏轉(zhuǎn)試驗(yàn)樣品的波動(dòng),從而消除了波動(dòng)。然而在某些特殊情況下,不能同時(shí)消除在整個(gè)區(qū)域內(nèi)的波動(dòng)。這樣的話有必要去掉橡膠襯套換用鋁制襯套。SPATE分析法反復(fù)分析實(shí)體襯套并且顯示出在前車身安裝連接周圍之間位置的高抗拉應(yīng)力(26MP)。遺憾是沒有一個(gè)SPATE分析可以著手分析組件的末端球節(jié),因?yàn)橐岣咻d荷適應(yīng)性是很難的,需要有液壓執(zhí)行機(jī)構(gòu)提供循環(huán)載荷。
比較結(jié)果
應(yīng)當(dāng)說(shuō)明的是表格中所引用的應(yīng)力值都是來(lái)源于應(yīng)變測(cè)量?jī)x的測(cè)量值,這些測(cè)量值是由多片組合式應(yīng)變片測(cè)出的最大主應(yīng)力進(jìn)而推算出的。光彈性分析也給出了最大主應(yīng)力值,除了在機(jī)體內(nèi)自由邊上的主應(yīng)力(δ1-δ2)與它不同。SPATE分析輸出值是以主應(yīng)力(δ1+δ2)的和給出的,而有限元分析可以以任一形式輸出數(shù)值。因?yàn)榻M合體的幾何形狀和加載力的方式的緣故δ2 和δ3值通常很小,這樣直接比較就沒有了在兩種不同分析方法間比較所產(chǎn)生的轉(zhuǎn)化數(shù)值。
表格1中的結(jié)果是在最大pot-hole的情況下比較出的。最大應(yīng)力值都產(chǎn)生在球節(jié)處與聯(lián)接處。由應(yīng)變測(cè)量?jī)x和光彈性分析在輕載的情況下可以測(cè)出這些合應(yīng)力。模型的應(yīng)力增加了,它是當(dāng)前后載荷和橫向載荷之間的比值保持不變并且當(dāng)在全pot-hole制動(dòng)時(shí)以不變的比例作用于懸架臂的。在輕載條件下的分析結(jié)果除了安裝襯套之外都列在表2中。
表3列舉了在輕載條件下無(wú)安裝襯套時(shí)都集中在一個(gè)非常小的點(diǎn)上的應(yīng)力值,而通過(guò)有限元分析給出的應(yīng)力值相對(duì)來(lái)說(shuō)分布要大的多。就光彈性分析的結(jié)果而言,在集中的兩邊上的平均公稱應(yīng)力也標(biāo)在括號(hào)中,以便比較。與應(yīng)變測(cè)量所得結(jié)果相比,由SPATE得出的結(jié)果是非常接近最大應(yīng)力的。當(dāng)應(yīng)力集中時(shí)理論上SPATE應(yīng)當(dāng)比應(yīng)變測(cè)量更有用,這樣在較小區(qū)域上的測(cè)量值取決于掃描的物體間的距離,這樣的話用SPATE測(cè)量時(shí)要設(shè)置1mm直徑,相比之下應(yīng)變測(cè)量需要設(shè)置2.5mm柵格長(zhǎng)。然而組合體在這個(gè)例子中有不同的循環(huán)的微小移動(dòng)時(shí),圖象在某種程度上將不可避免地發(fā)生模糊,這樣的誤差可以忽略不計(jì)。
表1.全載荷條件下的應(yīng)力值(MP)
位置
應(yīng)變測(cè)量
有限元分析
光彈性分析
球鉸窩
176
165
176
表2.輕載荷條件下安裝襯套的應(yīng)力值(MP)
位置
應(yīng)變測(cè)量
有限元分析
車身安裝連接的內(nèi)徑
25
20
球鉸窩
49
40
表3.輕載荷條件無(wú)安裝襯套的應(yīng)力值(MP)
位置
有限元分析
SPATE
光彈性分析
車身安裝連接的內(nèi)徑
22
26
43(25)
球鉸窩
30
-
42(25)
結(jié)論
上述使用的所有分析技術(shù):SPATE、光彈性分析、有限元分析以及應(yīng)變測(cè)量分析,這些分析表示出在球鉸窩附近區(qū)域的最高應(yīng)力,所有的方法也表示出車身安裝連接襯套的主應(yīng)力。然而,有限元分析不能經(jīng)常準(zhǔn)確地在大區(qū)域單元上表示出高應(yīng)力。如果需要更詳細(xì)的結(jié)果可以在這些區(qū)域上進(jìn)行有限元分析,那時(shí)它們不得不在高應(yīng)力梯度區(qū)域上模擬出更多,更詳細(xì)的單元。對(duì)于每一種分析技術(shù)來(lái)說(shuō)整個(gè)應(yīng)力分布圖是一樣的,應(yīng)變測(cè)量的結(jié)果和用有限元分析出的結(jié)果間的區(qū)別可以用測(cè)量的準(zhǔn)確性來(lái)解釋,就像Autio et al 31所記錄的一樣,應(yīng)變測(cè)量系統(tǒng)所引起的誤差占到5~10%,而更多的誤差是由于定向、定位以及測(cè)量引起的。為了獲得準(zhǔn)確的結(jié)果應(yīng)變測(cè)量需要一個(gè)合理的一致的應(yīng)力。由于任何一個(gè)很大的應(yīng)力梯度或是區(qū)域相對(duì)很低或者是非主應(yīng)力的原因,這種情況下形狀的改變?cè)趹壹鼙凵喜荒芙?jīng)常達(dá)到要求。
所有的實(shí)驗(yàn)技術(shù)在組合懸架臂上都顯示了類似的應(yīng)力分布圖。這些方法突出了在球鉸窩區(qū)域的高拉伸應(yīng)力,同樣也突出車身安裝連接臂周圍的高應(yīng)力。如果高應(yīng)力被測(cè)出,它們將如先前所料的那樣集中在幾何形狀改變的位置。光彈性分析有效地說(shuō)明在小區(qū)域上的應(yīng)力如何的集中。相比較而言有限元分析由許多幾毫米的單元組成,這樣可以平均一下長(zhǎng)度上的應(yīng)力密度,并且可以表示出較小的值。
這些實(shí)驗(yàn)技術(shù)展示了它們之間很好的關(guān)聯(lián)性,光彈性分析、SPATE以及有限元分析都對(duì)懸架臂進(jìn)行了分析,并且所得出的應(yīng)力圖是非常相似的。
還可以得出一個(gè)結(jié)論:SPATE技術(shù)可以提供一個(gè)有用的、非接觸的方法確定復(fù)合材料的應(yīng)力。
參考文獻(xiàn)
1 Sol, H. and de Wilde, W.P. "Identification of elastic properties of composite materials using resonant frequencies' Proc hit Confon Computer Aided Design in Composite Material Technology. Southampton, UK. 1988 (Computational Mechanics Publications, 1988) pp 273-280
2 Johnson, C.F., Chavka, N.G., Jeryan, R.A., Morris, C.J. and Babhington, D.A. 'Design and fabrication of a HSRTM crossmember module' Proe Third Advanced Composites Conference. Detroit. MI.USA (ASM International. September 1987) pp 197-217
3 Machin, A.S.. Sparrow, J.G. and Stimson, M.G. 'The thermoelasticconstant' SPIE 731 (1987) pp 26-31
4 Stanley, P. and Chan, W.K., "The application of thermoelastic stress analysis to composite materials' J Strum Anal23 No 3 (1988) pp 137-143
5 Bowles, D.E. and Tompkins, S.S. "Prediction of coefficients of thermal expansion for unidirectional composites" J Composite Mater 23 (1989) pp 370-388
6 Potter, R.T. "Stress analysis in laminated fibre composites by thermoelastic emission" SPIE 731 (1987) pp 110-120
7 Jones, R., Tay, T.E. and Williams, J.F. "Thermomechanical behaviour of composites" in Proc US Army Workshop on Composite Materials Response: Constitutive Relations and Damage Mechank's edited by G.C. Sim. G.F. Smith, I.H. Marshall and .[.J. Wuh (Elsevier, New York, 1988) pp 49-59
8 Potter, R.T. and Greaves, L.J. "The application of thermoelastic stress analysis techniques to fibre composites' SPIE 817 (1987) pp 134-146
9 Kageyama, K., Ueki, K. and Kikuchi, M. 'Thermoelastic technique applied to stress analysis of carbon fibre reinforced composite materials' Proc Sixth hit Congress on Experimental Mechanics. Portland, OR, USA, 1988 pp 931-936
10 Owens, R.H. "Applications of the thermoelastic effect to typical aerospace composite materials" SPIE731 (1987) pp 74-85
11 Cox, B.N. and Petit, D.E. "Non-destructive evaluation of composite materials using the SPATE technique" Proe SEM Spring Confon Experimental Mechanics. 1987 (Society for Experimental Mechanics, Bethel, USA) pp 545-552
12 Bakis, C.E. and Reifsnider, K.L. 'Non-destructive evaluation of fibre composite laminates by thermoelastic emission" in Review of Progress in Qualitative N.D.T. edited by D. O. Thompson (Pillhum Press, Williamsburg, VA, USA, 1988) pp 1109-1116
13 Heller, M., Williams, J.F., Dann, S. and Jones, R. 'Thermomechanicat analysis of composite specimens" Composite Structures 11 (1989) pp 309-324
14 Jones, R., Heller, M., Lombardo, D., Dunn, S., Paul, J. and Sanders, D. "Thermoelastic assessment of damage growth in composites' Composite Structures l Z (198Jones, R., Heller, M., Lombardo, D., Dunn, S., Paul, J. and Sanders, D. "Thermoelastic assessment of damage growth in composites' Composite Structures l Z (1989) pp 291-313
9) pp 291-313
15 Zhang, D. and Sandor, B.L 'Thermographic analysis of stress concentrations in a composite' Exptl Meeh 29 (1989) pp 121-125
16 'Near net shape processing for structural parts" Advanced Composites (May/June t986) pp 54-57
17 Pih, H. and Knight, C.E. "Photoelastic analysis ofanisotropie fibre reinforced composites" J Composite Mater 3 (1969) pp 94-107
18 Sampson, R.C. "A stress optic law for photoelastie analysis for orthotropic composites" Exprf Mech l0 0970) pp 210-216
19 Dally, J.W. and Prahhakaran, R. "Photo-orthotropic-elasticity' Exptl Mech (197t) pp 346-356
20 Knight, C.E. and Pih, H. "Orthotropic stress optic law for plane stress photoelasticity of composite materials" Fibre Sci and Teehno19 (1976) pp 297 313
21 Bert, C.W. "Theory of photoclasticity for birefringent filamentary composites" Fibre Sei and Technol 5 (1972) pp 165-171
22 Pipes, R.B. and Rose, J.L 'Photo-anisotropic-elasticity--a strain optic law for birefringent composites" SESA Spring Meeting. Los Angeles. CA. USA. 1973 (Society for Experimental Stress Analysis, Westport, CT, USA)
23 Hahn, H.T. and Morris, D.H. "Anisotropie photoelasticity with
application to composites" Fibre Sci and Teehnol 11 (1978) pp 113-125
24 Zandman, F., Redner, S. and Dally, J. 'Photoelastic coatings"SESA. 1977 (Iowa State University Press/Society for ExperimentalStress Analysis. Ames. IA. USA. 1977)
25 Daniel, I.M., Koller, G.M. and Niiro, T. 'Development and characterization of orthotropic birefringent materials' E.rptl Mech (1984) pp 135-143
26 Agarwal, B.D. and Chaturvedi, S.K. 'Improved birefringent composites and an assessment of photoelastie theories" Fibre Sci and Technol It (1978) pp 399-412
27 Cernsek, J. "On photoelastic response o.fcomposites" Exptl Mech
(1975) p 344
28 Mittal, R.K. 'On the effect of residual birefringence in anisotropic photoelastic materials' Strahz (1975) pp 55-75
29 Chandrashekhara, K., Abraham Jacob, K. and Prabhakaran, R. "Towards stress freezing in birefringent orthotropie composite models" Exptl Mech (1977) pp 317-320
30 Calvert, G. 'Stress analysis techniques for composite materials" MSc thesi.s (University of Warwick, UK, July 1992)
31 Autio, M., Parviainen, H. and Pram|la, A. "Reliability of FEM in analysing composite structures' bzt J Muter and Product Technol 6 No 4 (1991) pp 346-350
7
無(wú)錫太湖學(xué)院
信 機(jī) 系 機(jī)械工程及自動(dòng)化 專業(yè)
畢 業(yè) 設(shè) 計(jì)論 文 任 務(wù) 書
一、題目及專題:
1、題目 汽車變速器設(shè)計(jì)
2、專題
二、課題來(lái)源及選題依據(jù)
現(xiàn)代汽車上廣泛采用活塞式內(nèi)燃機(jī)作為動(dòng)力源,其轉(zhuǎn)矩和轉(zhuǎn)速變化范圍較小,而復(fù)雜的使用條件則要求汽車的驅(qū)動(dòng)力和車速能在相當(dāng)大的范圍內(nèi)變化。為解決這一矛盾,在傳動(dòng)系統(tǒng)中設(shè)置了變速器。它的功用是:改變傳動(dòng)比,擴(kuò)大驅(qū)動(dòng)輪轉(zhuǎn)矩和轉(zhuǎn)速的變化范圍,以適應(yīng)經(jīng)常變化的行駛條件,如起步、加速、上坡等,同時(shí)使發(fā)動(dòng)機(jī)在有利的工況下工作;在發(fā)動(dòng)機(jī)旋轉(zhuǎn)方向不變的前提下,使汽車能倒退行駛;利用空擋,中斷動(dòng)力傳遞,以使發(fā)動(dòng)機(jī)能夠起動(dòng)、怠速,并便于變速器換擋或進(jìn)行動(dòng)力輸出。隨著科技的高速發(fā)展,人們對(duì)汽車的要求越來(lái)越高,汽車的性能、使用壽命、能源消耗、振動(dòng)噪聲等在很大程度上取決于變速器的性能的設(shè)計(jì)和研發(fā)。變速器技術(shù)的發(fā)展是衡量汽車技術(shù)水平的一項(xiàng)主要依據(jù)。
4
三、本設(shè)計(jì)(論文或其他)應(yīng)達(dá)到的要求:
① 了解汽車變速器的組成原理,設(shè)計(jì)發(fā)展動(dòng)態(tài)和國(guó)內(nèi)外的發(fā)展現(xiàn)狀;
② 完成汽車變速器的設(shè)計(jì)工作;
③ 完成汽車變速器的裝配圖及其有關(guān)零件圖;
四、接受任務(wù)學(xué)生:
機(jī)械94 班 姓名 李 超
五、開始及完成日期:
自2012年11月12日 至2013年5月25日
六、設(shè)計(jì)(論文)指導(dǎo)(或顧問):
指導(dǎo)教師 簽名
簽名
簽名
教研室主任
〔學(xué)科組組長(zhǎng)研究所所長(zhǎng)〕 簽名
系主任 簽名
2012年11月12日
編號(hào)
無(wú)錫太湖學(xué)院
畢業(yè)設(shè)計(jì)(論文)
相關(guān)資料
題目: 汽車變速器設(shè)計(jì)
信機(jī) 系 機(jī)械工程及自動(dòng)化專業(yè)
學(xué) 號(hào): 0923180
學(xué)生姓名: 李 超
指導(dǎo)教師: 黃敏 (職稱:副教授)
2013年5月25日
目 錄
一、畢業(yè)設(shè)計(jì)(論文)開題報(bào)告
二、畢業(yè)設(shè)計(jì)(論文)外文資料翻譯及原文
三、學(xué)生“畢業(yè)論文(論文)計(jì)劃、進(jìn)度、檢查及落實(shí)表”
四、實(shí)習(xí)鑒定表
無(wú)錫太湖學(xué)院
畢業(yè)設(shè)計(jì)(論文)
開題報(bào)告
題目: 汽車變速器設(shè)計(jì)
信機(jī) 系 機(jī)械工程及自動(dòng)化 專業(yè)
學(xué) 號(hào): 0923180
學(xué)生姓名: 李 超
指導(dǎo)教師: 黃敏(職稱:副教授)
2012年11月12日
課題來(lái)源
自擬
科學(xué)依據(jù)(包括課題的科學(xué)意義;國(guó)內(nèi)外研究概況、水平和發(fā)展趨勢(shì);應(yīng)用前景等)
(1) 課題科學(xué)意義
變速器是關(guān)系汽車經(jīng)濟(jì)性和動(dòng)力性的重要部件,變速器在汽車上的作用主要用來(lái)改變發(fā)動(dòng)機(jī)傳到驅(qū)動(dòng)輪上的轉(zhuǎn)矩和轉(zhuǎn)速,目的是在原地起步、爬坡、轉(zhuǎn)彎、加速等各種行駛工況下,使汽車獲得不同的牽引力和速度,同時(shí)使發(fā)動(dòng)機(jī)在最有利的工況范圍內(nèi)工作。在發(fā)動(dòng)機(jī)旋轉(zhuǎn)方向不變情況下使汽車能倒退行駛和利用空擋中斷動(dòng)力傳遞,以使發(fā)動(dòng)機(jī)能夠啟動(dòng),怠速,并便于變速器換擋或進(jìn)行動(dòng)力輸出。雙座微型轎車的變速器的設(shè)計(jì)關(guān)系到微型轎車的動(dòng)力性和經(jīng)濟(jì)性的協(xié)調(diào),對(duì)其更進(jìn)一步的發(fā)展起到至關(guān)重要的作用。
(2)國(guó)內(nèi)外的研究狀況及其發(fā)展前景
AMT(Automated Mechanical Transmission)機(jī)械式自動(dòng)變速器,是在原有的機(jī)械變速器離合器結(jié)構(gòu)不變的情況下,通過(guò)加裝微機(jī)控制的自動(dòng)操作機(jī)構(gòu)取代由駕駛員人工完成的離合器分離、接合、摘檔與懸掛檔以及發(fā)動(dòng)機(jī)相應(yīng)同步調(diào)節(jié)等操作,最終實(shí)現(xiàn)換檔全過(guò)程操作的自動(dòng)化。它既具有AT自動(dòng)變速的優(yōu)點(diǎn)又保留原來(lái)手動(dòng)變速器MT齒輪傳動(dòng)效率高、成本底、結(jié)構(gòu)簡(jiǎn)單、容易制造的長(zhǎng)處。AMT系統(tǒng)是一個(gè)復(fù)雜的多輸入多輸出控制系統(tǒng)、參數(shù)多,變化快,時(shí)間歷程短。當(dāng)前,比較出名的AMT變速器有馬瑞利的F1、selespeed變速器,奧迪的DSG,BMW的SMG。AMT以優(yōu)越的動(dòng)力性能,乘坐舒適性和簡(jiǎn)便的操作,在汽車工業(yè)中占有相當(dāng)?shù)牡匚?。我?guó)幾種系列轎車上雖有應(yīng)用,但限于技術(shù)和經(jīng)濟(jì)條件,獨(dú)立開發(fā),成批生產(chǎn)AMT的能力尚不具備。
目前,國(guó)產(chǎn)轎車上使用的大多是手動(dòng)變速器(MT)。手動(dòng)變速器存在起動(dòng)不平穩(wěn)、發(fā)動(dòng)機(jī)轉(zhuǎn)速變化突然、發(fā)動(dòng)機(jī)工況不穩(wěn)、易對(duì)傳動(dòng)系統(tǒng)造成沖擊、駕駛員操縱頻繁等一系列缺點(diǎn),滿足不了人們的舒適性需求,因而正逐步被自動(dòng)變速器所取代。目前,自動(dòng)變速器新車裝車率,在美國(guó)已達(dá)90%以上,日本為73%以上,歐洲則為25%左右。在我國(guó),自動(dòng)變速器的使用比例不高,但正在迅速上升,主要還是安裝在檔次較高的轎車上。我國(guó)現(xiàn)在使用的自動(dòng)變速器,多數(shù)屬于電控液力自動(dòng)變速器(AT),存在著效率較低、結(jié)構(gòu)和制造工藝復(fù)雜、成本較高、維修不方便等缺點(diǎn)。與此相比,AMT由于繼承了齒輪傳動(dòng)固有的傳動(dòng)效率高、機(jī)構(gòu)緊湊、工作可靠等優(yōu)點(diǎn),并可以實(shí)現(xiàn)手動(dòng)和自動(dòng)兩種模式選擇,因此有較強(qiáng)的可靠性和適應(yīng)性。一些專家認(rèn)為,它具有比AT更大的發(fā)展優(yōu)勢(shì)。
研究?jī)?nèi)容
本課題需完成的內(nèi)容是:
1. 了解汽車變速器的組成,原理,設(shè)計(jì)發(fā)展動(dòng)態(tài)及我國(guó)現(xiàn)狀,形成文獻(xiàn)綜述;
2. 完成汽車變速器設(shè)計(jì)工作;
3. 繪制汽車變速器的裝配圖及其有關(guān)零件圖。
研究計(jì)劃及預(yù)期成果
研究計(jì)劃:
2012年11月12日-2012年12月2日:按照任務(wù)書要求查閱論文相關(guān)參考資料,填寫畢業(yè)設(shè)計(jì)開題報(bào)告書。
2013年1月11日-2013年3月4日:填寫畢業(yè)實(shí)習(xí)報(bào)告。
2013年3月5日-2013年3月8日:按照要求修改畢業(yè)設(shè)計(jì)開題報(bào)告。
2013年3月9日-2013年3月15日:學(xué)習(xí)并翻譯一篇與畢業(yè)設(shè)計(jì)相關(guān)的英文材料。
2013年3月22日-2013年4月15日:變速器參數(shù)的選擇計(jì)算。
2013年4月16日-2013年4月27日:變速器裝配圖和零件圖。
2013年4月28日-2013年5月20日:畢業(yè)論文撰寫和修改工作。
已具備的條件和尚需解決的問題
① 已經(jīng)找到相關(guān)資料對(duì)汽車變速器有所了解。
② 相關(guān)數(shù)據(jù)的計(jì)算及裝配圖的畫法存在問題。
指導(dǎo)教師意見
指導(dǎo)教師簽名:
年 月 日
教研室(學(xué)科組、研究所)意見
教研室主任簽名:
年 月 日
系意見
主管領(lǐng)導(dǎo)簽名:
年 月 日
編號(hào)
無(wú)錫太湖學(xué)院
畢業(yè)設(shè)計(jì)(論文)
題目: 汽車變速器設(shè)計(jì)
信機(jī) 系 機(jī)械工程及自動(dòng)化 專業(yè)
學(xué) 號(hào): 0923180
學(xué)生姓名: 李 超
指導(dǎo)教師: 黃敏 (職稱:副教授)
2012年5月25日
XVI
無(wú)錫太湖學(xué)院本科畢業(yè)設(shè)計(jì)(論文)
誠(chéng) 信 承 諾 書
本人鄭重聲明:所呈交的畢業(yè)設(shè)計(jì)(論文)汽車變速器設(shè)計(jì) 是本人在導(dǎo)師的指導(dǎo)下獨(dú)立進(jìn)行研究所取得的成果,其內(nèi)容除了在畢業(yè)設(shè)計(jì)(論文)中特別加以標(biāo)注引用,表示致謝的內(nèi)容外,本畢業(yè)設(shè)計(jì)(論文)不包含任何其他個(gè)人、集體已發(fā)表或撰寫的成果作品。
班 級(jí): 機(jī)械94
學(xué) 號(hào): 0923180
作者姓名:
2013 年 5 月 25 日
無(wú)錫太湖學(xué)院
信 機(jī) 系 機(jī)械工程及自動(dòng)化 專業(yè)
畢 業(yè) 設(shè) 計(jì)論 文 任 務(wù) 書
一、題目及專題:
1、題目 汽車變速器設(shè)計(jì)
2、專題
二、課題來(lái)源及選題依據(jù)
現(xiàn)代汽車上廣泛采用活塞式內(nèi)燃機(jī)作為動(dòng)力源,其轉(zhuǎn)矩和轉(zhuǎn)速變化范圍較小,而復(fù)雜的使用條件則要求汽車的驅(qū)動(dòng)力和車速能在相當(dāng)大的范圍內(nèi)變化。為解決這一矛盾,在傳動(dòng)系統(tǒng)中設(shè)置了變速器。它的功用是:改變傳動(dòng)比,擴(kuò)大驅(qū)動(dòng)輪轉(zhuǎn)矩和轉(zhuǎn)速的變化范圍,以適應(yīng)經(jīng)常變化的行駛條件,如起步、加速、上坡等,同時(shí)使發(fā)動(dòng)機(jī)在有利的工況下工作;在發(fā)動(dòng)機(jī)旋轉(zhuǎn)方向不變的前提下,使汽車能倒退行駛;利用空擋,中斷動(dòng)力傳遞,以使發(fā)動(dòng)機(jī)能夠起動(dòng)、怠速,并便于變速器換擋或進(jìn)行動(dòng)力輸出。隨著科技的高速發(fā)展,人們對(duì)汽車的要求越來(lái)越高,汽車的性能、使用壽命、能源消耗、振動(dòng)噪聲等在很大程度上取決于變速器的性能的設(shè)計(jì)和研發(fā)。變速器技術(shù)的發(fā)展是衡量汽車技術(shù)水平的一項(xiàng)主要依據(jù)。
I
三、本設(shè)計(jì)(論文或其他)應(yīng)達(dá)到的要求:
① 了解汽車變速器的組成原理,設(shè)計(jì)發(fā)展動(dòng)態(tài)和國(guó)內(nèi)外的發(fā)展現(xiàn)狀;
② 完成汽車變速器的設(shè)計(jì)工作;
③ 完成汽車變速器的裝配圖及其有關(guān)零件圖;
四、接受任務(wù)學(xué)生:
機(jī)械94 班 姓名 李 超
五、開始及完成日期:
自2012年11月12日 至2013年5月25日
六、設(shè)計(jì)(論文)指導(dǎo)(或顧問):
指導(dǎo)教師 簽名
簽名
簽名
教研室主任
〔學(xué)科組組長(zhǎng)研究所所長(zhǎng)〕 簽名
系主任 簽名
2012年11月12日
I
摘 要
現(xiàn)代汽車的動(dòng)力裝置幾乎都是采用往復(fù)活塞式內(nèi)燃機(jī),它具有體積小、質(zhì)量輕、工作可靠、使用方便等優(yōu)點(diǎn),但其性能與汽車的動(dòng)力性和經(jīng)濟(jì)性之間存在著較大的矛盾。
汽車需要克服作用在它上面的阻力,才能起步和正常的行駛。汽車變速器和主減速器,它們可以使驅(qū)動(dòng)車輪的扭矩增大為發(fā)動(dòng)機(jī)扭矩的若干倍,又可以使其轉(zhuǎn)速減小到發(fā)動(dòng)機(jī)轉(zhuǎn)速的若干分之一。
傳動(dòng)系有兩個(gè)功能:傳送發(fā)動(dòng)機(jī)到驅(qū)動(dòng)輪之間的動(dòng)力和改變轉(zhuǎn)矩的大小。由此可見傳動(dòng)系統(tǒng)是汽車非常重要的組成部分,從而對(duì)汽車傳動(dòng)系的結(jié)構(gòu)分析與設(shè)計(jì)計(jì)算也就顯非常重要了。
主要設(shè)計(jì)內(nèi)容有變速器的布置方案與設(shè)計(jì),齒輪的強(qiáng)度計(jì)算與校核;主減速器主、從動(dòng)錐齒輪的支承方案選擇,主減速器主要參數(shù)選擇與計(jì)算;差速器的設(shè)計(jì)。并且用AutoCAD繪出變速器和差速器的裝配圖還有部分零件圖。
通過(guò)對(duì)微型轎車變速器的設(shè)計(jì),不僅滿足了現(xiàn)代汽車的動(dòng)力性,也提高了其經(jīng)濟(jì)性,滿足了市場(chǎng)現(xiàn)有的需求。
關(guān)鍵詞:傳動(dòng)系;變速器;主減速器;差速器
III
Abstract
The Reciprocating Engine are almost used as the power plant of modern motor, which is advanced in the small volume, light weight, reliability and convenience. However, there is contradiction between the performance and the dynamic and economy of the vehicle.
As to start and drive smoothly, the vehicle has to come over the resistance. The torque of the wheels could be increased as several times of the engine or be decreased one of a number of points of the engine speed by the transmission and the main reducer.
The transmission has two function transmit the engine power to the wheels and change the torque. So the transmission is one of the most important parts of the vehicle. The Analysis and design of the transmission are also vital.
The design is consisted of Layout and design of the programme of the transmission, the strength calculation and checking of the gear, the support programme of the final drive active bevel gear and driven bevel gear, the main parameters choosing and calculation of the main reducer and the Differential design. The assembly of the main reducer and the differential and the parts must be drawn with the software AUTOCAD.
According to the transmission design of the mini vehicle, the dynamic ,economy and the market of the modern vehicle are satisfied.
Key words: Power train; Transmission; Final drive; Differential
I
目 錄
摘 要 III
Abstract III
目 錄 V
1 緒論 1
1.1 本課題的研究?jī)?nèi)容和意義 1
1.2 國(guó)內(nèi)外的發(fā)展概況 1
1.3本課題應(yīng)達(dá)到的要求 2
2 變速器傳動(dòng)機(jī)構(gòu)布置方案 3
2.1 傳動(dòng)機(jī)構(gòu)布置方案分析 3
2.1.1 兩軸式和中間軸式變速器 3
2.1.2 三軸式 3
2.1.3 倒擋的形式和布置方案 4
2.2 零部件布置方案分析 4
2.2.1 齒輪形式 4
2.2.2 換擋的結(jié)構(gòu)形式 4
2.2.3 防止自動(dòng)脫檔的措施 5
2.2.4 軸承形式 5
2.3 本章小結(jié) 5
3 變速器主要參數(shù)的選擇及設(shè)計(jì)計(jì)算 6
3.1 擋位數(shù)確定 6
3.2 傳動(dòng)比 6
3.3 中心距 8
3.4 齒輪參數(shù) 8
3.5 各檔齒輪齒數(shù)的分配 9
3.6 齒輪的設(shè)計(jì)計(jì)算 11
3.7 本章小結(jié) 12
4 變速器主要結(jié)構(gòu)元件的校核 13
4.1 齒輪損壞的原因及形式 13
4.2 齒輪材料的選擇原則 13
4.3 輪齒強(qiáng)度校核 14
4.3.1 齒輪的接觸強(qiáng)度 14
4.3.2 齒輪的接觸強(qiáng)度 15
4.4 軸的強(qiáng)度校核 18
4.5 軸承的校核 22
4.5.1 輸入軸軸承校核 22
4.5.2 輸出軸軸承校核 23
4.6 本章小結(jié) 24
5 結(jié)論與展望 25
致 謝 26
參考文獻(xiàn) 26
附 錄 28
I
汽車變速器設(shè)計(jì)
1 緒論
1.1 本課題的研究?jī)?nèi)容和意義
變速器的功能是在不相同的條件下,改變發(fā)動(dòng)機(jī)傳在驅(qū)動(dòng)輪上的轉(zhuǎn)矩和轉(zhuǎn)速,使汽車得到不一樣的牽引力以及速度,同時(shí)是發(fā)動(dòng)機(jī)在最佳的工況范圍內(nèi)工作。此外,應(yīng)保證汽車能倒退行駛和停車時(shí)使發(fā)動(dòng)機(jī)和傳動(dòng)系保持分離。需要時(shí)還應(yīng)有動(dòng)力輸出的功能。
隨著我國(guó)千人汽車保有量的大副上升,高速公路,高級(jí)公路的不斷建設(shè),汽車正逐漸進(jìn)入家庭,成為人們生活中的一部分。與此同時(shí)帶來(lái)了燃料的大量需求,所以汽車的燃油經(jīng)濟(jì)性應(yīng)給予重視。汽車的動(dòng)力性、經(jīng)濟(jì)性能是車輛的重要性能,影響汽車的動(dòng)力性、經(jīng)濟(jì)性能的因素很多,其中汽車的動(dòng)力裝置參數(shù)(發(fā)動(dòng)機(jī)的參數(shù);變速器的擋位及傳動(dòng)比)對(duì)上述性能的影響較大。因此對(duì)汽車變速器的研究有非常重要的社會(huì)意義和經(jīng)濟(jì)意義。
1.2 國(guó)內(nèi)外的發(fā)展概況
手動(dòng)變速器(MT:Manual Transmission)主要采用了齒輪傳動(dòng)的降速原理。變速器內(nèi)有多組傳動(dòng)比不同的齒輪副,而汽車行駛時(shí)的換擋工作,也就是通過(guò)操縱機(jī)構(gòu)使變速器內(nèi)不同的齒輪副工作。
自動(dòng)變速器(AT:Automatic Transmission)是由液力變矩器,行星齒輪和液壓操縱系統(tǒng)組成,通過(guò)液力變矩器和齒輪組合的方式來(lái)達(dá)到變速變矩。
AMT是在傳統(tǒng)干式離合器和手動(dòng)齒輪變速器的基礎(chǔ)上改造而成,主要改變了手動(dòng)換擋操縱部分。即在MT總體結(jié)構(gòu)不變的情況下改用電子控制來(lái)實(shí)現(xiàn)自動(dòng)換擋。
無(wú)級(jí)變速器(CVT:Continuously Variable Transmission),又稱為連續(xù)變速式機(jī)械變速器。金屬帶式無(wú)級(jí)變速器主要包括主動(dòng)輪組,從動(dòng)輪組,金屬帶和液壓泵等基本部件。主要靠主動(dòng)輪,從動(dòng)輪和傳動(dòng)帶來(lái)實(shí)現(xiàn)速比的無(wú)級(jí)變化,傳動(dòng)帶一般用橡膠帶,金屬帶和金屬鏈等。
無(wú)限變速式機(jī)械無(wú)級(jí)變速器(IVT:Infinitely Variable Transmission)采用的是一種摩擦板式變速原理。IVT的核心部分由輸入傳動(dòng)盤,輸出傳動(dòng)盤和Variator傳動(dòng)盤組成。它們之間的接觸點(diǎn)以潤(rùn)滑油作介質(zhì),金屬之間不接觸,通過(guò)改變Variator裝置的角度變化而實(shí)現(xiàn)傳動(dòng)比的連續(xù)而無(wú)限的變化[1]。
汽車的發(fā)展經(jīng)歷了三大革命,動(dòng)力革命(內(nèi)燃機(jī)的使用),傳動(dòng)革命(機(jī)械傳動(dòng)的完善和液體傳動(dòng)的使用)和控制革命(用傳感器、微機(jī)和電液閥進(jìn)行信息處理)。
從先進(jìn)國(guó)家來(lái)看,動(dòng)力革命和傳動(dòng)革命已經(jīng)完成,目前正處于控制革命階段,要解決的主要是機(jī)械太“機(jī)械”,沒有靈性的問題,過(guò)去機(jī)械全靠人來(lái)操縱控制,然而人的生理和心理能力(感覺器官的功能、頭腦分析的能力和體能)是有限的,操縱汽車這樣復(fù)雜的機(jī)械對(duì)于人來(lái)說(shuō)體力和腦力負(fù)擔(dān)是很重要的,更主要的是單靠人力操縱將阻礙汽車的發(fā)展和其性能的提高。因此必須對(duì)汽車各部分(發(fā)動(dòng)機(jī)、變速器、懸架、制動(dòng)和轉(zhuǎn)向機(jī)構(gòu)等)進(jìn)行自動(dòng)控制并從各部分的單獨(dú)控制向整車一體化控制發(fā)展,從一般控制向智能控制發(fā)展[2]。
與AT產(chǎn)品、CVT產(chǎn)品相比,AMT產(chǎn)品的顯著優(yōu)勢(shì)是工藝技術(shù)難度小,可以充分利用現(xiàn)有MT車型離合器、變速器生產(chǎn)企業(yè)的產(chǎn)品技術(shù)、生產(chǎn)能力,減少產(chǎn)業(yè)化投資,降低產(chǎn)品成本50%以上。AMT產(chǎn)品傳動(dòng)效率高,汽車燃油消耗量比AT車型降低10%~20%,與CVT車型基本一致。AMT產(chǎn)品的自動(dòng)換檔功能與AT產(chǎn)品、CVT產(chǎn)品基本一致,起步平順性略有突兀。AMT產(chǎn)品的關(guān)鍵技術(shù)是換檔時(shí)動(dòng)力傳輸間斷過(guò)程控制,在離合器操縱實(shí)現(xiàn)自動(dòng)控制的基礎(chǔ)上,協(xié)調(diào)運(yùn)用節(jié)氣門調(diào)整技術(shù),快速、平穩(wěn)地完成自動(dòng)換擋操縱,解決了AMT產(chǎn)品電控單元與發(fā)動(dòng)機(jī)燃油噴射電控單元之間無(wú)法通訊的技術(shù)限制,保證AMT產(chǎn)品換檔平順性與AT產(chǎn)品、CVT產(chǎn)品基本一致[3]。
AMT產(chǎn)品通過(guò)加裝微計(jì)算機(jī)控制、電動(dòng)機(jī)驅(qū)動(dòng)的操縱機(jī)構(gòu),自動(dòng)取代原車人工完成的離合器分離與接合、變速器選檔和換檔等操作,最終使汽車起步、變速全過(guò)程序列操作的自動(dòng)化。汽車的自動(dòng)變速簡(jiǎn)化了駕駛動(dòng)作,使得汽車易于駕駛,減輕了駕駛員的勞動(dòng)強(qiáng)度,提高了行車安全性,大大降低了駕駛員的操縱技術(shù)水平對(duì)汽車的動(dòng)力性、經(jīng)濟(jì)性、平順性和尾氣排放的影響,保證了車輛駕駛過(guò)程中處于良好的工作狀態(tài)。它特別適應(yīng)改革開放以來(lái),隨著生活水平的提高,人們對(duì)汽車品位要求的不斷提高,以及非職業(yè)汽車駕駛員急速增加形成對(duì)自動(dòng)變速器的迫切需求,有利于轎車早日進(jìn)入普通家庭。
1.3本課題應(yīng)達(dá)到的要求
為保證變速器具有良好的工作性能,對(duì)變速器提出如下基本要求:
(1)應(yīng)正確選擇變速器的檔位和傳動(dòng)比,保證汽車有必要的動(dòng)力性和經(jīng)濟(jì)性指標(biāo);
(2)設(shè)置空擋和倒檔,保證發(fā)動(dòng)機(jī)與驅(qū)動(dòng)輪能長(zhǎng)期分離,使汽車能進(jìn)行倒退行駛;
(3)工作可靠,操縱輕便。汽車在行駛過(guò)程中,變速器內(nèi)不應(yīng)有自動(dòng)跳擋,亂檔,換檔沖擊等現(xiàn)象發(fā)生。為減輕駕駛員的勞動(dòng)強(qiáng)度,提高行駛安全性,操作輕便的要求日益顯得重要,這可通過(guò)采用同步器和預(yù)選氣動(dòng)或自動(dòng),半自動(dòng)換檔來(lái)實(shí)現(xiàn);
(4)重量輕,體積小。影響這個(gè)指標(biāo)的主要參數(shù)是變數(shù)器中心距。選用優(yōu)質(zhì)鋼材,采用合理的熱處理,設(shè)計(jì)合適的齒形,提高齒輪精度以及選用圓錐滾柱軸承可減小中心距;
(5)傳動(dòng)效率高。為減少齒輪的嚙合損失,應(yīng)有直接檔。提高零件的制造和裝配質(zhì)量,采用適當(dāng)?shù)臐?rùn)滑油都可以提高傳動(dòng)效率;
滿足汽車必要的動(dòng)力性和經(jīng)濟(jì)性指標(biāo),這與變速器的檔數(shù)、傳動(dòng)比范圍和各檔傳動(dòng)比有關(guān)。汽車工作的道路條件越復(fù)雜、比功率越小,變速器的傳動(dòng)比范圍越大。
2 變速器傳動(dòng)機(jī)構(gòu)布置方案
2.1 傳動(dòng)機(jī)構(gòu)布置方案分析
變速器由變速器傳動(dòng)機(jī)構(gòu)和操縱機(jī)構(gòu)組成。根據(jù)軸的不同類型,分為固定軸式和旋轉(zhuǎn)軸式兩大類,而前者又分為兩軸式,中間軸式和多軸式變速器[4]。
2.1.1 兩軸式和中間軸式變速器
現(xiàn)代汽車大多數(shù)都采用三軸式變速器,而發(fā)動(dòng)機(jī)前置前輪驅(qū)動(dòng)的轎車,若變速器傳動(dòng)比小,則常用兩軸式變速器。在設(shè)計(jì)時(shí),究竟采用哪一種方案,除了汽車總布置的要求外,主要考慮以下四個(gè)方面:
(1)結(jié)構(gòu)工藝性
兩軸式變速器輸出軸與主減速器主動(dòng)齒輪做成一體。當(dāng)發(fā)動(dòng)機(jī)縱置時(shí),主減速器可用螺旋圓錐齒輪或雙曲面齒輪;而發(fā)動(dòng)機(jī)橫置時(shí)用圓柱齒輪,因而簡(jiǎn)化了制造工藝。
(2)變速器的徑向尺寸
兩軸式變速器輸出軸的前進(jìn)擋均為一對(duì)齒輪副,而中間軸式變速器則有兩對(duì)齒輪副。因此,對(duì)于相同的傳動(dòng)比要求,中間軸式變速器的徑向尺寸可以比兩軸式變速器小得多。
(3)變速器齒輪的壽命
兩軸式變速器的低檔齒輪副,大小相差懸殊,小齒輪工作循環(huán)次數(shù)比大齒輪要高得多。因此,小齒輪的壽命比大齒輪的短。中間軸式變速器的各前進(jìn)擋均為常嚙合斜齒輪傳動(dòng),大小齒輪的徑向尺寸相差較小,因而壽命較接近。在直接擋時(shí),齒輪只空轉(zhuǎn),不影響齒輪壽命。
2.1.2 三軸式
三軸式變速器的第一軸常嚙合齒輪與第二軸的各檔齒輪分別與中間軸的相應(yīng)齒輪相嚙合,且第一、二軸同心。將第一、二軸直接連接起來(lái)傳遞轉(zhuǎn)矩則稱為直接檔。此時(shí),齒輪、軸承及中間軸均不承載,而第一、二軸也僅傳遞轉(zhuǎn)矩.因此,直接檔的傳動(dòng)效率高,磨損及噪聲也最小, 其他前進(jìn)檔需依次經(jīng)過(guò)兩對(duì)齒輪傳遞轉(zhuǎn)矩[5]。因此,在齒輪中心距(影響變速器尺寸的重要參數(shù))較小的情況下仍然可以獲得大的一檔傳動(dòng)比,但除了直接檔外其他各檔的傳動(dòng)效率有所降低,適用于傳統(tǒng)的發(fā)動(dòng)機(jī)前置、后輪驅(qū)動(dòng)的布置形式?,F(xiàn)選用三軸式變速器(見圖2.1)。
圖2.1 三軸式變速器簡(jiǎn)圖
2.1.3 倒擋的形式和布置方案
圖2.1為常見的布置方案。圖a方案廣泛用于前進(jìn)擋都是同步器換擋的四擋轎車和輕型貨車變速器中;b方案的優(yōu)點(diǎn)是可以利用中間軸上的1擋齒輪,因而縮短了中間軸的長(zhǎng)度,某些輕型貨車四擋變速器采用這種方案;c方案能獲得較大的倒擋速比,突出的缺點(diǎn)是換擋程序不合理;d方案針對(duì)前者的缺點(diǎn)作了修改,因而在貨車變速器中取代了c方案;e方案中,將中間軸上的一擋和倒擋齒輪做成一體,其齒寬加大,因而縮短了一些長(zhǎng)度;f方案采用了全部齒輪副均為常嚙合齒輪,換擋更為輕便;為了充分利用空間,有的貨車采用g方案,其缺點(diǎn)是一擋和倒擋得各用撥叉軸,使其上蓋中的操縱機(jī)構(gòu)變的更復(fù)雜。后述五種方案可供五擋變速器的選擇,本次設(shè)計(jì)采用圖2.2(b)所示的倒擋布置方案。
圖2.2 倒擋布置方案
2.2 零部件布置方案分析
2.2.1 齒輪形式
變速器用齒輪有直齒圓柱齒輪和斜齒圓柱齒輪兩種。與前者相比,后者有使用的壽命更長(zhǎng)、運(yùn)轉(zhuǎn)性能平穩(wěn)、工作時(shí)的噪聲低等等優(yōu)點(diǎn);但是相對(duì)的缺點(diǎn)是制造的時(shí)候會(huì)變得復(fù)雜,工作時(shí)會(huì)有軸向力,這樣這對(duì)軸承很不利。變速器中的常嚙合齒輪通常采用的是斜齒圓柱齒輪。直齒圓柱齒輪僅用于低檔和倒擋[6]。
2.2.2 換擋的結(jié)構(gòu)形式
變速器換擋機(jī)構(gòu)形式分為直齒滑動(dòng)齒輪、嚙合套和同步器換擋三種。
(1)滑動(dòng)齒輪換擋
通常采用滑動(dòng)直齒輪換擋,也有采用斜齒輪換擋的。滑動(dòng)直齒輪換擋的優(yōu)點(diǎn)是結(jié)構(gòu)簡(jiǎn)單、緊湊、容易制造。缺點(diǎn)是換擋時(shí)齒面承受很大的沖擊,會(huì)導(dǎo)致齒輪過(guò)早損壞,并且直齒輪工作噪聲大,所以這種換擋方式一般僅用于一擋和倒擋。
(2)嚙合套換擋
用嚙合套換擋,可將構(gòu)成某傳動(dòng)比的一對(duì)齒輪,制成常嚙合的斜齒輪。用嚙合套換擋,因同時(shí)承受換擋沖擊載荷的接合齒齒數(shù)多,而輪齒又不參與換擋,它們都不會(huì)過(guò)早損壞,但不能消除換擋沖擊,所以仍要求駕駛員有熟練的操縱技術(shù)。此外,因增設(shè)了嚙合套和常嚙合齒輪,使變速器的軸向尺寸和旋轉(zhuǎn)部分的總慣性力矩增大。因此,這種換擋方法目前只在某些要求不高的擋位及重型貨車變速器上應(yīng)用[7]。
(3)同步器換擋
現(xiàn)代大多數(shù)汽車的變速器都采用同步器能保證迅速,無(wú)沖擊,無(wú)噪聲換擋,而與操縱技術(shù)熟練程度無(wú)關(guān),從而提高了汽車的加速性、經(jīng)濟(jì)性和行車安全性。同上述兩種換擋方法相比,雖然它有結(jié)構(gòu)復(fù)雜,制造精度要求高,軸向尺寸大。同步環(huán)使用壽命短缺等缺點(diǎn),但仍然得到廣泛應(yīng)用。由于同步器的廣泛應(yīng)用,壽命問題已得到基本解決。如瑞典的薩伯-斯堪尼亞(SAAB-Scania)公司,用球墨鑄鐵制造同步器的關(guān)鍵部件,并在其工作表面上鍍上一層鉬,不僅提高了耐磨性,而且提高了工作表面的摩擦系數(shù),這種同步器試驗(yàn)表明,它的壽命不低于齒輪壽命,法國(guó)的貝利埃(Berliet)。德國(guó)擇孚(ZF)等公司的同步器均采用了這種工藝。
上述三種換擋方案,可同時(shí)用在一變速器中的不同擋位上,一般倒擋和一擋采用結(jié)構(gòu)較簡(jiǎn)單的滑動(dòng)直齒輪或嚙合套的形式;對(duì)于常用的高擋位則采用同步器或嚙合套。
2.2.3 防止自動(dòng)脫檔的措施
自動(dòng)脫擋是變速器的主要故障之一。由于接合齒磨損、變速器剛度不足以及振動(dòng)等原因,都會(huì)導(dǎo)致自動(dòng)脫擋。除了在工藝上采取相應(yīng)的措施以外,目前在結(jié)構(gòu)上采取措施且相對(duì)有效的方案有以下幾種:
(1)把兩個(gè)接合齒的嚙合位置相互錯(cuò)開。這樣它們?cè)趪Ш蠒r(shí),會(huì)使接合齒的頂部超過(guò)被接合齒的1~3mm。使用時(shí)兩齒接觸部分受到擠壓同時(shí)磨損,并在接合齒頂部形成凸肩,可用來(lái)防止接合齒的自動(dòng)脫擋。
(2)把嚙合齒套齒座上面的前齒圈的齒厚切薄,換擋后嚙合套的后端面被后齒圈的前端面頂住,從而防止自動(dòng)脫擋。
(3)把接合齒的工作面設(shè)計(jì)并加工成斜面,形成倒錐角(一般傾斜2°~3°),使接合齒面產(chǎn)生防止自動(dòng)脫擋的軸向力。這種方案比較有效,應(yīng)用較多。將接合齒的齒側(cè)設(shè)計(jì)并加工成臺(tái)階形狀,也具有相同的阻止自動(dòng)脫擋的效果[8]。
2.2.4 軸承形式
變速器多采用滾動(dòng)軸承,通常是根據(jù)變速器的結(jié)構(gòu)選定,再驗(yàn)算其壽命。過(guò)去,變速器軸的支承廣泛采用滾珠軸承、滾柱軸承和滾針軸承,近年來(lái),變速器的設(shè)計(jì)趨勢(shì)是增大其傳遞功率與質(zhì)量之比,并要求它有更多的容量和更好的性能。而上述軸承形式已不能滿足對(duì)變速器可靠性和壽命提出的要求,故使用圓錐滾柱軸承的增多。其主要優(yōu)點(diǎn)如下:滾錐軸承的接觸線長(zhǎng),如果錐角和配合選擇合適,可提高軸和齒輪沿縱向平面分開或沿中心線所在平面分開,這樣可使裝拆和調(diào)整軸承方便。由于上述特點(diǎn),滾錐軸承已在歐洲一些轎車、貨車和重型貨車變速器上得到應(yīng)用。固定式中間軸采用滾針軸承或圓柱滾子軸承支承著連體齒輪(塔輪,寶塔齒輪)。
2.3 本章小結(jié)
本章對(duì)變速器傳動(dòng)機(jī)構(gòu)的布置方案和零、部件結(jié)構(gòu)方案進(jìn)行了系統(tǒng)的分析,并給出了此次設(shè)計(jì)的具體方案,即設(shè)計(jì)兩軸式變速器,倒擋布置方案如圖2-2(b)所示,前進(jìn)擋皆為斜齒圓柱齒輪,倒擋為直齒圓柱齒輪,采用全同步器式換擋形式,軸承選取深溝球軸承、圓柱滾子軸承、滾針軸承、圓錐滾子軸承。
3 變速器主要參數(shù)的選擇及設(shè)計(jì)計(jì)算
3.1 擋位數(shù)確定
變速器的擋數(shù)可在3~20個(gè)擋位范圍內(nèi)變化,通常變速器的擋數(shù)在6擋以下,當(dāng)擋數(shù)超過(guò)6擋以后,可在6擋以下的主變速器基礎(chǔ)上,再行配置副變速器,通過(guò)兩者的組合獲得多擋變速器。
增加變速器的擋數(shù),能夠改變汽車的動(dòng)力性和燃油經(jīng)濟(jì)性以及平均車速。擋數(shù)越多,變速器的結(jié)構(gòu)越復(fù)雜,并且使輪廓尺寸和質(zhì)量加大,同時(shí)操縱機(jī)構(gòu)復(fù)雜,而且在使用時(shí)換擋頻率增高并增加了換擋難度。
在最低擋傳動(dòng)比不變的條件下,增加變速器的擋數(shù)會(huì)使變速器相鄰的低檔與高檔之間的傳動(dòng)比比值減小,使換擋工作容易進(jìn)行。要求相鄰擋位之間的傳動(dòng)比值在1.8以下,該值越小換擋工作越容易進(jìn)行。因高擋使用頻繁,所以又要求高檔區(qū)相鄰擋位之間的傳動(dòng)比比值,要比低檔區(qū)相鄰擋位之間的傳動(dòng)比比值小。
近年來(lái),為了降低油耗,變速器的擋數(shù)有增加的趨勢(shì)。目前,乘用車一般用4~5個(gè)擋位的變速器。發(fā)動(dòng)機(jī)排量大的乘用車變速器多用5個(gè)擋。商用車變速器采用4~5 個(gè)擋或多擋。載質(zhì)量在2.0~3.5t的貨車多采用5個(gè)擋,載質(zhì)量在4.0~8.0t的貨車采用六擋變速器。多擋變速器多用于總質(zhì)量大些的貨車和越野汽車上。
本次設(shè)計(jì)的變速器采用4個(gè)前進(jìn)擋位,1個(gè)倒擋位。
3.2 傳動(dòng)比
變速器的傳動(dòng)比范圍是指變速器最低擋傳動(dòng)比與最高擋傳動(dòng)比的比值。最高擋通常是1.0,有的變速器最高擋是超速擋,傳動(dòng)比為0.7~0.8。影響最低擋傳動(dòng)比選取的因素有:發(fā)動(dòng)機(jī)的最大轉(zhuǎn)矩和最低穩(wěn)定轉(zhuǎn)速所要求的汽車最大爬坡能力、驅(qū)動(dòng)輪與路面間的附著力、主減速比和驅(qū)動(dòng)輪的滾動(dòng)半徑以及所要求達(dá)到的最低穩(wěn)定行駛車速等。目前乘用車的傳動(dòng)比范圍在3.0~4.5之間,總質(zhì)量輕的商用車在5.0~8.0之間,其他商用車則更大。
汽車爬陡坡時(shí)車速不高,空氣阻力可忽略,則最大驅(qū)動(dòng)力用于克服輪胎與路面間的滾動(dòng)阻力及爬坡阻力。故有:
(3.1)
由最大爬坡度要求的變速器Ⅰ檔傳動(dòng)比為:
(3.2)
式中 ——汽車總質(zhì)量;
——重力加速度;
——道路阻力系數(shù);
Ψmax——道路最大阻力系數(shù);
——最大爬坡要求;
——驅(qū)動(dòng)車輪的滾動(dòng)半徑;
——發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩;
——主減速比;
——汽車傳動(dòng)系的傳動(dòng)效率。
主減速比i0的確定:
(3.3)
式中 ——車輪的滾動(dòng)半徑,m;
——發(fā)動(dòng)機(jī)轉(zhuǎn)速,r/min;
——變速器最高檔傳動(dòng)比;
——最高車速,km/h。
本課題變速器=1,一般汽車的最大爬坡度約為30%[7],即=16.7°,f=0.02
由公式(3.3)得:
由公式(3.2)得:
根據(jù)驅(qū)動(dòng)車輪與路面的附著條件確定
變速器Ⅰ檔傳動(dòng)比為:
(3.4)
式中 ——汽車滿載靜止于水平路面時(shí)驅(qū)動(dòng)橋給地面的載荷;
——道路的附著系數(shù),計(jì)算時(shí)取=0.5~0.6。
因?yàn)槠嚭筝S的軸荷分配范圍為60%~68%,所以
G2=3500×9.8×68%=23324N
由公式(3.3)和公式(3.4)得:
綜合a和b條件得:
5.48≤≤7.31,取=(5.48+7.31)/2≈6.40
變速器的Ⅰ檔傳動(dòng)比應(yīng)根據(jù)上述條件確定。變速器的最高檔一般為直接檔,有時(shí)用超速檔。中間檔的傳動(dòng)比理論上按公比為 (其中n為檔位數(shù))的幾何級(jí)數(shù)排列。
因?yàn)?,所?q=1.875, = ×q=3.516。
實(shí)際上與理論值略有出入,因齒數(shù)為整數(shù)且常用檔位間的公比宜小些,另外還要考慮與發(fā)動(dòng)機(jī)參數(shù)的合理匹配。在變速器結(jié)構(gòu)方案、檔位數(shù)和傳動(dòng)比確定后,即可進(jìn)行其他基本參數(shù)的選擇與計(jì)算。
3.3 中心距
中心距對(duì)變速器的尺寸及質(zhì)量有直接影響,所選的中心距應(yīng)能保證齒輪的強(qiáng)度。三軸式變速器的中心距A(mm)可根據(jù)對(duì)已有變速器的統(tǒng)計(jì)而得出的經(jīng)驗(yàn)公式初選:
(3.5)
式中 ——中心距系數(shù)。對(duì)轎車取8.9~9.3;對(duì)貨車取8.6~9.6; 對(duì)多檔主變速器,取9.5~11;
——變速器處于Ⅰ檔時(shí)的輸出轉(zhuǎn)矩,
(3.6)
——發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩,N?m;
——變速器的Ⅰ檔傳動(dòng)比;
——變速器的傳動(dòng)效率,取0.96。
由公式(3.6)得:
=104×6.4×0.96=638.976N·m
由公式(3.5)得:
mm
初選中心距也可以由發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩按下式直接求出:
(3.7)
式中 ——按發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩直接求中心距時(shí)的中心距系數(shù),對(duì)轎車取14.5~16.0,對(duì)貨車取17.0~19.5。
由公式(3.7)得:
mm
一般汽車變速器的中心距約在80~170mm范圍內(nèi)變化,初選A=100mm。
3.4 齒輪參數(shù)
齒輪模數(shù)是一個(gè)重要參數(shù),并且影響它的選取因素又很多,如齒輪的強(qiáng)度、質(zhì)量、噪聲、工藝要求等。應(yīng)該指出,選取齒輪模數(shù)時(shí)一般要遵守的原則是:
(1)在變速器中心距相同的條件下,選取較小的模數(shù),就可以增加齒輪的齒數(shù),同時(shí)增加齒寬可以使齒輪嚙合的重合度增加,并減少齒輪噪聲,所以為了減少噪聲應(yīng)合理減少模數(shù),同時(shí)增加齒寬;為使質(zhì)量小些,應(yīng)該增加模數(shù),同時(shí)減少齒寬;從工藝方面考慮,各擋齒輪應(yīng)該選用一種模數(shù),而從強(qiáng)度方面考慮,各擋齒輪應(yīng)有不同的模數(shù);減少乘用車齒輪工作噪聲有較為重要的意義,因此齒輪的模數(shù)應(yīng)選得小些;對(duì)貨車,減少質(zhì)量不減少噪聲更重要,故齒輪應(yīng)選用大些的模數(shù);變速器低檔齒輪應(yīng)選用大些的模數(shù),其他擋位選用另一種模數(shù)。少數(shù)情況下,汽車變速器各擋齒輪均選用相同的模數(shù),變速器用齒輪模數(shù)的范圍如表3.2[9]。
(2)所選模數(shù)值應(yīng)符合國(guó)家標(biāo)準(zhǔn)GB/T1357—1987的規(guī)定。選用時(shí),應(yīng)優(yōu)先選用第一系列,括號(hào)內(nèi)的模數(shù)盡可能不用。
(3)嚙合套和同步器的接合齒多數(shù)采用漸開線齒形。由于工藝上的原因,同一變速器中的接合齒模數(shù)相同。其取用范圍是:乘用車和總質(zhì)量在1.8~14.0t的貨車為2.0~3.5mm;總質(zhì)量大于14.0t的貨車為3.5~5.0mm。選取較小的模數(shù)值可使齒數(shù)增多,有利于換擋。
3.5 各檔齒輪齒數(shù)的分配
在初選變速器的檔位數(shù)、傳動(dòng)比、中心距、軸向尺寸及齒輪模數(shù)和螺旋角并繪出變速器的結(jié)構(gòu)方案簡(jiǎn)圖后,即可對(duì)各檔齒輪的齒數(shù)進(jìn)行分配,如圖3.1所示。
圖3.1 本課題變速器結(jié)構(gòu)簡(jiǎn)圖
(1)確定Ⅰ檔齒輪的齒數(shù)
已知Ⅰ檔傳動(dòng)比,且
(3.8)
為了確定z7、z8的齒數(shù),先求其齒數(shù)和:
直齒齒輪:
(3.9)
先取齒數(shù)和為整數(shù),然后分配給z7、z8。為了使z7/z8盡量大一些,應(yīng)將z8取得盡量小一些,這樣,在已定的條件下z2/z1的傳動(dòng)比可小些,以使第一軸常嚙合齒輪可分配到較多齒數(shù),以便在其內(nèi)腔設(shè)置第二軸的前軸承。z8的最少齒數(shù)受到中間軸軸徑的限制,因此z8的選定應(yīng)與中間軸軸徑的確定統(tǒng)一考慮。貨車變速器中間軸的Ⅰ檔直齒輪的最小齒數(shù)為12~14,選擇齒輪的齒數(shù)時(shí)應(yīng)注意最好不使相配齒輪的齒數(shù)和為偶數(shù),以減小大、小齒輪的齒數(shù)間有共約數(shù)的機(jī)會(huì),否則會(huì)引起齒面的不均勻磨損。
由公式(3.9)得:
取=60,考慮到上述條件以及選用了標(biāo)準(zhǔn)齒輪(齒數(shù)不要小于17),故取z8=17,得出=60-17=43
(2)修正中心距A
若計(jì)算所得的z7、z8不是整數(shù),則取為整數(shù)后需按該式反算中心距A,修正后的中心距則是各檔齒輪齒數(shù)分配的依據(jù)。
由公式(3.9)得:
A=(3.5×60)/2=105mm
(3)確定常嚙合傳動(dòng)齒輪副的齒數(shù)
(3.10)
確定了z7、z8后由公式(3.9)和(3.10)聯(lián)立方程求解z1、z2
, 故z1=17 ;z2=43
(4)確定其他檔位的齒輪齒數(shù)
Ⅱ檔齒輪副:
(3.11)
由公式(3.9)和(3.11)聯(lián)立方程求解z5、z6。
因?yàn)?= ×q=3.516 ,所以先試湊z5、z6。
試湊出z5=33、z6=27,此時(shí)=3.09。
Ⅲ檔齒輪副:
(3.12)
由公式(3.9)和(3.12)聯(lián)立方程求解z5、z6。
因?yàn)?=q=1.875 ,所以先試湊z3、z4。
試湊出z3=24、z4=36,此時(shí)=1.69。
(5)確定倒檔齒輪副的齒數(shù)
通常Ⅰ檔與倒檔選用同一模數(shù),且通常倒檔齒輪齒數(shù)z10=21~23。則中間軸與倒檔軸之間的中心距為:
(3.13)
初選z10=22,由公式(3.13)得:
mm
為了避免干涉,齒輪8與齒輪9的齒頂圓之間應(yīng)有不小于0.5mm的間隙,則:
(3.14)
由公式(3.14)得:
mm
根據(jù)d9選擇齒數(shù),取z9=17。
最后計(jì)算倒檔與第二軸的中心距:
(3.15)
由公式(3.15)得:
mm
≈8.28
綜合上述計(jì)算修正一下各檔的傳動(dòng)比(見表3-1)。
表3-1 各檔速比
檔位
Ⅰ
Ⅱ
Ⅲ
Ⅳ
倒檔
速比
6.40:1
3.09:1
1.69:1
1:1
8.28:1
3.6 齒輪的設(shè)計(jì)計(jì)算
常嚙合齒輪副:
Ⅰ檔齒輪副:
Ⅱ檔齒輪副:
Ⅲ檔齒輪副:
倒檔齒輪:
3.7 本章小結(jié)
本章主要介紹了變速器主要參數(shù)的選擇,包括確定擋數(shù)、傳動(dòng)比范圍,根據(jù)最大爬坡度和驅(qū)動(dòng)輪與地面的附著力確定一擋傳動(dòng)比和倒檔傳動(dòng)比,進(jìn)而確定其它各擋傳動(dòng)比,選擇中心距、外形尺寸以及齒輪參數(shù)。根據(jù)變速器的傳動(dòng)示意圖確定各擋齒輪齒數(shù),進(jìn)行各擋齒輪的分配。
4 變速器主要結(jié)構(gòu)元件的校核
4.1 齒輪損壞的原因及形式
變速器齒輪的損壞形式主要有:輪齒折斷、齒面疲勞剝落(點(diǎn)蝕)、齒面膠合以及移動(dòng)換擋齒輪端部破壞[10]。
輪齒折斷發(fā)生在下述幾種情況下:輪齒受到足夠大的沖擊載荷作用,造成輪齒彎曲折斷;輪齒在重復(fù)載荷的作用下,齒根產(chǎn)生疲勞裂紋,裂紋擴(kuò)展深度逐漸加大,然后出現(xiàn)彎曲折斷。前者在變速器中出現(xiàn)的極少,而后者出現(xiàn)的多些。
輪齒工作時(shí),一對(duì)齒輪相互嚙合,齒面相互擠壓,這時(shí)存在與齒面細(xì)小裂縫中的潤(rùn)滑油油壓升高,并導(dǎo)致裂縫擴(kuò)展,然后齒面表層出現(xiàn)塊狀剝落而形成小麻點(diǎn),稱之為齒面點(diǎn)蝕。它使齒形誤差加大,產(chǎn)生動(dòng)載荷,并可能導(dǎo)致輪齒折斷。
用移動(dòng)齒輪的方法完成換擋的低檔齒輪和倒檔齒輪,由于換擋時(shí)兩個(gè)進(jìn)入嚙合的齒輪存在角速度差,換擋瞬間澡輪齒端部產(chǎn)生沖擊載荷,并造成損壞[11]。
負(fù)荷大、齒面相對(duì)滑動(dòng)速度又高的齒輪,在接觸壓力打且家畜處產(chǎn)生高溫作用的情況下使齒面間的潤(rùn)滑膜破壞,導(dǎo)致齒面直接接觸,在局部高溫、高壓作用下齒面互相熔焊粘連,齒面沿滑動(dòng)方向形成撕傷痕跡,稱為齒面膠合。變速器齒輪的這種破壞出現(xiàn)較少。
4.2 齒輪材料的選擇原則
(1)滿足工作條件的要求
不同的工作條件,對(duì)齒輪傳動(dòng)有不同的要求,故對(duì)齒輪材料亦有不同的要求。但是對(duì)于一般動(dòng)力傳輸齒輪,要求其材料具有足夠的強(qiáng)度和耐磨性,而且齒面硬,齒芯軟。
(2)合理選擇材料配對(duì)
如對(duì)硬度≤350HBS的軟齒面齒輪,為使兩輪壽命接近,小齒輪材料硬度應(yīng)略高于大齒輪,且使兩輪硬度差在30~50HBS左右。為提高抗膠合性能,大、小輪應(yīng)采用不同鋼號(hào)材料。
(3)考慮加工工藝及熱處理工藝
大尺寸的齒輪一般采用鑄造毛坯,可選用鑄鋼或鑄鐵;中等或中等以下尺寸要求較高的齒輪常采用鍛造毛坯,可選擇鍛鋼制作。尺寸較小而又要求不高時(shí),可選用圓鋼作毛坯。軟齒面齒輪常用中碳鋼或中碳合金鋼,經(jīng)正火或調(diào)質(zhì)處理后,再進(jìn)行切削加工即可;硬齒面齒輪(硬度>350HBS)常采用低碳合金鋼切齒后再表面滲碳淬火或中碳鋼(或中碳合金鋼)切齒后表面淬火,以獲得齒面、齒芯韌的金相組織,為消除熱處理對(duì)已切輪齒造成的齒面變形需進(jìn)行磨齒。但若采用滲氮處理,其齒面變形小,可不磨齒,故可適用于內(nèi)齒輪等無(wú)法磨齒的齒輪[12]。
現(xiàn)代汽車變速器齒輪大都采用滲碳合金鋼制造,使輪齒表層的高硬度與輪齒心部的高韌性相結(jié)合,以大大提高其接觸強(qiáng)度、彎曲強(qiáng)度及耐磨性。在選擇齒輪的材料及熱處理時(shí)也應(yīng)考慮到其機(jī)械加工性能及制造成本。
國(guó)產(chǎn)汽車變速器齒輪的常用材料是20CrMnTi(過(guò)去的鋼號(hào)是18CrMnTi),也有采用20Mn2TiB,20MnVB,20MnMOB的。對(duì)于大模數(shù)的重型汽車變速器齒輪,可采用25CrMnMO,20CrNiMO,12Cr3A等鋼材,這些低碳合金鋼都需隨后的滲碳、淬火處理,以提高表面硬度,細(xì)化材料晶面粒。為消除內(nèi)應(yīng)力還要進(jìn)行回火。
變速器齒輪輪齒表面滲碳深度的推薦范圍如下:
≤3.5,滲碳深度0.8~1.2mm;
3.5<<5,滲碳深度0.9~1.3mm;
≥5,滲碳深度1.0~1.6mm。
滲碳齒輪在淬火、回火后,要求輪齒的表面硬度為HRC58~63,心部硬度為HRC33~48。
某些輕型以下的載貨汽車和轎車等變速器的小模數(shù)(≤3.0~3.75)齒輪采用了40Cr或35Cr鋼并進(jìn)行表面氰化處理。這種中碳鉻鋼具有滿意的鍛造性能及良好的強(qiáng)度指標(biāo),氰化鋼熱處理后變形小也是其優(yōu)點(diǎn)。但由于氰化層較薄且鋼的含碳量又高,故接觸強(qiáng)度和承載能力均受到限制。對(duì)于氰化齒輪,氰化層的深度一般為0.2~0.4mm,不應(yīng)小于0.2 mm,表面硬度為HRC48~53[13]。
4.3 輪齒強(qiáng)度校核
4.3.1 齒輪的接觸強(qiáng)度
直齒齒輪彎曲應(yīng)力:
(4.1)
式中 ——計(jì)算載荷,N?mm;
——應(yīng)力集中系數(shù),直齒齒輪取1.65;
——摩擦力影響系數(shù),主動(dòng)齒輪取1.1,被動(dòng)齒輪取0.9;
——齒輪模數(shù);
——齒輪齒數(shù);
——齒寬系數(shù),直齒齒輪取4.4~7.0;
——齒形系數(shù),齒高系數(shù)相同、節(jié)點(diǎn)處壓力角不同時(shí):,,,;壓力角相同、齒高系數(shù)為0.8時(shí),;
——輪齒彎曲應(yīng)力,當(dāng)時(shí),直齒齒輪的許用應(yīng)力MPa。
因?yàn)樵撟兯倨魉械凝X輪采用同一種材料,所以當(dāng)校核時(shí)只要校核受力最大和危險(xiǎn)的檔位齒輪。故分別計(jì)算Ⅰ檔、倒檔齒輪的彎曲強(qiáng)度。
Ⅰ檔齒輪副:主動(dòng)齒輪z8=17,從動(dòng)齒輪z7=43
Ⅰ檔主動(dòng)齒輪的計(jì)算載荷
由公式(4.1)得: 主動(dòng)齒輪z8的彎曲強(qiáng)度:
Ⅰ檔從動(dòng)齒輪的計(jì)算載荷
從動(dòng)齒輪z7的彎曲強(qiáng)度:
倒檔齒輪副:因?yàn)榈箼n齒輪相當(dāng)于一個(gè)惰輪,所以主動(dòng)齒輪是Z8=17,從動(dòng)齒輪是Z10=22。通過(guò)惰輪后主動(dòng)齒輪是Z9=17,從動(dòng)輪是Z7=43。
惰輪的計(jì)算載荷
通過(guò)惰輪前,Z10=22的彎曲強(qiáng)度由公式得:
通過(guò)惰輪后主動(dòng)輪是Z9=17,從動(dòng)輪是Z7=43。
Z9的計(jì)算載荷
Z7的計(jì)算載荷
以上的齒輪副都滿足彎曲強(qiáng)度的要求。
4.3.2 齒輪的接觸強(qiáng)度
齒輪的接觸應(yīng)力按下式計(jì)算:
(4.2)
式中 F——法向內(nèi)基圓周切向力即齒面法向力,N;
(4.3)
Ft——端面內(nèi)分度圓切向力即圓周力,N;
(4.4)
——計(jì)算載荷,;
d——節(jié)圓直徑,;
——節(jié)點(diǎn)處壓力角;
——螺旋角;
E——齒輪材料的彈性模量,鋼取2.1×105MPa;
b——齒輪接觸的實(shí)際寬度,斜齒齒輪為代替,;
——主、被動(dòng)齒輪節(jié)點(diǎn)處的齒廓曲率半徑,mm;直齒齒輪:, ;斜齒齒輪:,;
r1,r2——分別為主、被動(dòng)齒輪的節(jié)圓半徑,mm。
當(dāng)計(jì)算載荷為許用接觸應(yīng)力見表4-1。
常嚙合齒輪副:當(dāng)計(jì)算載荷為
,
由公式(4.4)和(4.3)得:
由公式(4.2)得:
Ⅰ檔: 計(jì)算載荷為
,
由公式(4.4)和(4.3)得:
由公式(4.2)得:
Ⅱ檔:計(jì)算載荷為
,
由公式(4.4)和(4.3)得:
由公式(4.2)得:
Ⅲ檔:計(jì)算載荷為
由公式(4.4)和(4.3)得:
由公式(4.2)得:
倒檔:計(jì)算載荷為
,
由公式(4.4)和(4.3)得:
由公式(4.2)得:
計(jì)算載荷為 ,
由公式(4.4)和(4.3)得:
由公式(4.2)得:
以上檔位的齒輪副都滿足接觸強(qiáng)度的要求(見表4-1)。
表4-1 變速器齒輪的許用接觸應(yīng)力
齒輪
滲碳齒輪
氰化齒輪
一檔及倒檔
1900~2000
950~1000
常嚙合及高檔
1300~1400
650~700
4.4 軸的強(qiáng)度校核
變速器在工作時(shí),由于齒輪上有圓周力、徑向力和軸向力作用,變速器的軸要承受轉(zhuǎn)矩和彎矩。要求變速器的軸應(yīng)有足夠的剛度和強(qiáng)度。因?yàn)閯偠炔蛔爿S會(huì)產(chǎn)生彎曲變形,結(jié)果破壞了齒輪的正確嚙合,對(duì)齒輪的強(qiáng)度、耐磨性和工作噪聲等均有不利影響[14]。因此,在設(shè)計(jì)變速器軸時(shí),其剛度大小應(yīng)以保證齒輪能有正確的嚙合為前提條件。設(shè)計(jì)階段可根據(jù)經(jīng)驗(yàn)和已知條件先初選軸的直徑,然后根據(jù)公式進(jìn)行有關(guān)剛度和強(qiáng)度方面的驗(yàn)算。
軸的徑向及軸向尺寸對(duì)其剛度影響很大,且軸長(zhǎng)與軸徑應(yīng)協(xié)調(diào),變速器軸的最大直徑與支承間的距離可按下列關(guān)系式初選:
對(duì)第一軸及中間軸:
對(duì)第二軸: (4.5)
三軸式變速器的第二軸與中間軸的最大直徑d可根據(jù)中心距A(mm)按下式初選:
由公式(4.5)得:
第二軸:l=d/(0.18~0.21)=225~350mm;
中間軸:l=d/(0.16~0.18)=262.5~393.75mm;
第一軸:l=d/(0.16~0.18)=104.4~135.13mm。
第一軸花鍵部分直徑可根據(jù)發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩Temax (N·m)按下式初選:
(4.6)
由公式(4.6)得:
初選的軸徑還需根據(jù)變速器的結(jié)構(gòu)布置和軸承與花鍵、彈性檔圈等標(biāo)準(zhǔn)以及軸的剛度與強(qiáng)度驗(yàn)算結(jié)果進(jìn)行修正。欲求中間軸式變速器第一軸的支點(diǎn)反力,必須先求第二軸的支點(diǎn)反力。檔位不同,不僅齒輪上的圓周力、徑向力和軸向力不同,而且力到支點(diǎn)的距離也有變化,所以應(yīng)當(dāng)對(duì)每個(gè)檔位都進(jìn)行驗(yàn)算[15]。驗(yàn)算時(shí),將軸看作鉸接支承的梁,作用在第
一軸上的轉(zhuǎn)矩應(yīng)取。
齒輪嚙合的圓周力Ft、徑向力Fr、及軸向力Fa可按下式求出:
(4.7)
式中 i——至計(jì)算齒輪的傳動(dòng)比;
d——計(jì)算齒輪的節(jié)圓直徑,;
——節(jié)點(diǎn)處壓力角;
——螺旋角;
——發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩,。
在彎矩和轉(zhuǎn)矩聯(lián)合作用下的軸應(yīng)力(MPa)為:
(4.8)
(4.9)
式中 ——彎曲截面系數(shù),;
D——軸在計(jì)算斷面處的直徑,花鍵處取內(nèi)徑,mm;
——在計(jì)算斷面處軸的垂向彎矩,N·mm;
——在計(jì)算斷面處軸的水平彎矩,N·mm;
[]——許用應(yīng)力,在低檔工作時(shí)取400MPa。
變速器軸與齒輪的制造材料相同,計(jì)算時(shí),僅計(jì)算齒輪所在位置處軸的撓度和
轉(zhuǎn)角。第一軸常嚙合齒輪副,因距離支承點(diǎn)近、負(fù)荷又小,通常撓度不大,故可以不必計(jì)算[16]。若軸在垂直面內(nèi)撓度為fc,在水平面內(nèi)撓度為fs和轉(zhuǎn)角為δ,可分別用下式計(jì)算: (4.10)
式中 E——彈性模量,MPa,;
I——慣性矩,對(duì)實(shí)心軸,;
d——軸的直徑,,花鍵處按平均直徑來(lái)計(jì)算;
a,b——齒輪上的作用力矩支座A、B的距離,;
L——支座間的距離,。
在上述計(jì)算中,花鍵軸的計(jì)算直徑可取為其花鍵內(nèi)徑的1.1倍。軸斷面的轉(zhuǎn)角不應(yīng)大于0.002rad(弧度)。軸的垂向撓度的容許值[fc]=0.05~0.10mm;軸的水平撓度的容許值[fs]=0.10~0.15mm。軸的合成撓度應(yīng)小于0.20mm。
4.4.1 校核第二軸的強(qiáng)度與剛度
Ⅰ檔:此時(shí)第二軸受到齒輪Z7的作用力
由公式(4.5)得:
由公式(4.9)得:
由公式(4.7)得:
剛度校核:花鍵軸的計(jì)算直徑取其花鍵內(nèi)徑的1.1倍,dh=1.1×31=34.1mm,
由公式(4.10)得:
軸的合成撓度。以上數(shù)據(jù)滿足要求。
4.4.2 校核中間軸在強(qiáng)度與剛度
Ⅰ檔:此時(shí)中間軸受到齒輪Z8的作用力,因?yàn)橐粚?duì)嚙合齒輪所受的力是大小相等,方向相反的,所以由上述的第二軸上齒輪所受的力可以得到中間軸上齒輪所受的力。
FtⅠ=8845.18N;FrⅠ=3184.27N
由公式(4-10)得:
由公式(4-9)得:
剛度校核:
由公式(4-11)得:
軸的合成撓度。
4.4.3 校核倒檔軸的強(qiáng)度與剛度
當(dāng)Z7和Z9嚙合時(shí):
由公式(4-10)得:
由公式(4.8)得:
剛度校核: