購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
公交車弱中度混合動力系統(tǒng)底盤機械部分的改進設(shè)計研究,車輛工程系汽車072唐明亮指導(dǎo)老師鄒政耀,一、選題背景,1.伴隨著環(huán)境的日益惡化以及石油資源的進一步匱乏,環(huán)境污染和能源短缺已成為世界性的挑戰(zhàn),如何減少汽車對對環(huán)境的污染和能源的消耗關(guān)系到人類的可持續(xù)發(fā)展。2.城區(qū)公交車停靠的站點多,站與站之間的距離不長,城區(qū)交通擁擠,行駛時速不高,再加上交通道口紅燈停車,起步、停車十分頻繁,行駛時由于時速較低,載荷不大,車輛負荷率低,造成了能源的極大浪費。3.由于蓄電池技術(shù)尚未成熟,純電動汽車的發(fā)展受到制約。無疑混合動力汽車是目前比較理想的發(fā)展方向之一。,,,二、研究目的,本次畢業(yè)論文以YBL6110GH城市公交車為基礎(chǔ),旨在設(shè)計一種可用于制動能量回收與二次牽引的機構(gòu),達到車輛起步助力與節(jié)省燃油消耗的目的,下圖所示為機構(gòu)簡圖。,,1.連接齒輪2.飛輪3.電機4.離合器5.升速機構(gòu)6.傳動軸,三、系統(tǒng)工作過程,系統(tǒng)工作過程可以分為4個狀態(tài):制動能量回收、飛輪保持高速轉(zhuǎn)動、飛輪釋放能量及飛輪為自由狀態(tài)。(1)檢測到車輛制動時,離合器接合,飛輪被整車驅(qū)動,飛輪的比功率大,可以短時間內(nèi)吸收大量的能量,并以高速轉(zhuǎn)動形式存儲能量,因此原消耗于制動器的動能就被轉(zhuǎn)移為飛輪的動能;(2)電機采用發(fā)電機工況吸收飛輪動能,轉(zhuǎn)變?yōu)殡娔艽嬗谛铍姵?,?dāng)飛輪轉(zhuǎn)速下降到設(shè)定閡值,電機采用電驅(qū)動模式,保持飛輪穩(wěn)定在該轉(zhuǎn)速,以準(zhǔn)備供給車輛起步時輔助能量;(3)根據(jù)車速和飛輪的轉(zhuǎn)速情況,在合適的時間離合器分離,飛輪吸收制動能量的過程結(jié)束;(4)檢測到車輛起步,接合離合器,飛輪釋放其動能,實現(xiàn)起步助力的功能;若車輛不需再次加速或起步(例如可通過檢測車輛停車后較長時間沒有起步),則由電機吸收飛輪能量,直到最后飛輪轉(zhuǎn)速低于一較小值。,四、論文主體結(jié)構(gòu),混合動力汽車背景簡介基于城市客車的參數(shù)匹配飛輪機構(gòu)與增速機構(gòu)的設(shè)計變速器、主減速器與差速器設(shè)計結(jié)論,五、研究工作與結(jié)論,1.整車選型綜合考慮中國城市公交車駕駛循環(huán)特點和使用特點,選取了以YBL6110GH城市客車為基礎(chǔ)的并聯(lián)式驅(qū)動形式。2.選用上海柴油機股份有限公司SC8DK230Q3型柴油機,對變速器、主減速器和差速器進行了參數(shù)設(shè)計,并進行強度校核,繪制出了二維零件圖與總裝配圖。3.提出了一種新型的機電復(fù)合制動能量回收理論,用于汽車制動時能量回收與二次牽引,對其進行了理論設(shè)計與強度校核,設(shè)計結(jié)果顯示該機構(gòu)能有效回收制動能量,達到起步助力與節(jié)省燃油消耗的目的。,
南京工程學(xué)院
車輛工程系
本科畢業(yè)設(shè)計(論文)
題 目:公交車弱中度混合動力系統(tǒng)底盤
機械部分的改進設(shè)計研究
專 業(yè): 機械設(shè)計制造及其自動化
(汽車技術(shù))
班 級: 汽車072 學(xué) 號: 215070226
學(xué)生姓名: 唐明亮
指導(dǎo)教師: 鄒政耀 副 教 授
起迄日期: 2011.2.21~2011.6.10
設(shè)計地點: 車輛工程實驗中心
南京工程學(xué)院車輛工程系本科畢業(yè)設(shè)計(論文)
為整車整備質(zhì)量
為飛輪存儲的能量
為飛輪的轉(zhuǎn)動慣量
為飛輪的轉(zhuǎn)速
為功率容量
變速器傳動比
主減速器的傳動比
為汽車傳動系傳遞給系統(tǒng)的扭矩
為離合器提供扭矩
為飛輪轉(zhuǎn)動慣量
為飛輪起始轉(zhuǎn)速
為離合器從動盤吸收能量時間
為汽車制動時間
為輪緣厚度
為輪緣寬度
為飛輪材料密度
為汽車制動時初始速度
為制動行程
為飛輪體積
為飛輪質(zhì)量
為行星輪數(shù)
為齒輪齒數(shù)
為載荷系數(shù)
為中心距系數(shù)
A為變速器中心距
附錄C:參 數(shù) 表
離合器猛接時所產(chǎn)生的動載系數(shù)
汽車滿載總重量
汽車滿載狀態(tài)下一個驅(qū)動橋上的載荷
汽車最大加速度時后軸負荷轉(zhuǎn)移系數(shù)
輪胎與路面附著系數(shù)
車輪滾動半徑
為道路滾動阻力系數(shù)
為平均爬坡能力系數(shù)
為汽車性能系數(shù)
錐齒輪的計算轉(zhuǎn)矩
為齒輪所受到的扭矩
為齒形系數(shù)
應(yīng)力修正系數(shù)
為重合度系數(shù)
為螺旋角系數(shù)
為節(jié)點系數(shù)
為重合度系數(shù)
為螺旋角系數(shù)
為材料系數(shù)
齒輪模數(shù)
為試驗齒輪的應(yīng)力修正系數(shù)
為彎曲疲勞壽命安全系數(shù)
為軸的材料的剪切彈性模量
為齒寬系數(shù)
為軸截面的極慣性矩
72
Graduation Design (Thesis)
Improvement Design and Research of Chassis Mechanical Part for City Bus Slight-middle
Hybrid Power System
By
TANG Mingliang
Supervised by
Associate Prof. ZOU Zhengyao
Department of Vehicle Engineering
Nanjing Institute of Technology
June, 2011
南京工程學(xué)院車輛工程系本科畢業(yè)設(shè)計(論文)
摘 要
城市公交車輛運行工況復(fù)雜,需要頻繁啟停,大量的能量消耗于車輛制動。針對這一問題,此次畢業(yè)論文旨在設(shè)計一種可用于制動能量回收與二次牽引的機構(gòu),達到車輛起步助力與節(jié)省燃油消耗的目的。
通過查閱文獻資料,了解了混合動力系統(tǒng)的結(jié)構(gòu)與城市公交運行工況的特點,掌握了飛輪機構(gòu)進行制動能量回收與再利用的機理。以YBL6110GH車型為基礎(chǔ),對變速器、主減速器、差速器和飛輪機構(gòu)的材料、外形尺寸、公差配合等數(shù)據(jù)進行了設(shè)計與強度校核。
根據(jù)所選上海柴油機股份有限公司SC8DK230Q3型柴油機,設(shè)計獲得了變速器、主減速器、差速器和飛輪機構(gòu)各零件結(jié)構(gòu)參數(shù),經(jīng)過強度校核能滿足設(shè)計要求,設(shè)計結(jié)果顯示,將飛輪吸收的能量用于車輛起步輔助,可達到起步助力的目的,有效節(jié)省燃油消耗,最后采用AutoCAD繪制二維零件圖和一張總裝圖。
分析了傳動系統(tǒng)的動力分配路線,設(shè)計了變速器、主減速器和差速器的主要結(jié)構(gòu)參數(shù),增加了用于制動能量回收和二次牽引的飛輪機構(gòu),提出了用兩排行星排構(gòu)成的增速機構(gòu),實現(xiàn)了起步助力與節(jié)省燃油消耗的目的。
關(guān)鍵詞:車輛工程;混合動力;能量回收;高速飛輪
I
南京工程學(xué)院車輛工程系本科畢業(yè)設(shè)計(論文)
ABSTRACT
The complex conditions of the urban public transport vehicles, which require frequent stops, cause a lot of energy consumption in the braking. For this issue, the task aimed to design a mechanism for braking energy recovery and second traction, is achieved, in company with the purpose of vehicle starting power and economical fuel consumption.
By referring to documentation, the structure of hybrid system and the characteristics of the operation condition of urban public transport are mastered very thorough, as well as the flywheel braking energy recovery and reuse. A YBL6110GH model is the basis on transmission, main reducer, differential and flywheel mechanism of materials, dimensions, tolerances and other data for the design and strength check.
According to the selected diesel engine of Shanghai Diesel Engine Co., Ltd. SC8DK230Q3, part of the structure parameters from transmission, final drive, differential and the flywheel are designed, which also meets the design requirements through strength check. Design results show that the energy absorbed by the flywheel can be used for vehicle starting to achieve the objective of starting power, which is effective in economical fuel consumption. In the last, several two-dimensional parts drawings and an assembly drawing are done by using AutoCAD.
The dynamic allocation routes of transmission system are analyzed, the main structure parameters of the transmission, final drive and differential are designed, the flywheel mechanism for braking energy recovery and second traction is added, the theory of a growth rate mechanism constituted by two rows of planetary gear is proposed, the purpose of starting power and economical fuel consumption is achieved.
Keywords: Vehicle Engineering,Hybrid Power,Energy Recovery,High-speed Flywheel
II
南京工程學(xué)院車輛工程系本科畢業(yè)設(shè)計(論文)
目 錄
第一章 緒論 1
1.1 混合動力汽車的開發(fā)背景 1
1.2 混合動力汽車簡介 3
1.3 國內(nèi)外混合動力汽車發(fā)展現(xiàn)狀 4
1.3.1 國外混合動力汽車發(fā)展現(xiàn)狀 4
1.3.2 國內(nèi)混合動力汽車發(fā)展現(xiàn)狀 6
1.4 本課題的研究意義和目的 7
第二章 混合動力城市客車的參數(shù)匹配 9
2.1 城市客車運行工況分析 9
2.2 混合動力城市客車的選型 10
2.3 總體方案分析 12
第三章 飛輪機構(gòu)設(shè)計 15
3.1 系統(tǒng)結(jié)構(gòu)及工作原理 15
3.2 系統(tǒng)設(shè)計 16
3.2.1 汽車制動時飛輪吸收的能量 17
3.2.2 起步過程中汽車從飛輪吸收的能量 20
3.2.3 飛輪尺寸的確定 23
3.3 增速機構(gòu)的設(shè)計 23
第四章 變速機構(gòu)的設(shè)計 29
4.1 變速器主要參數(shù)選擇 29
4.2 各擋齒輪齒數(shù)的分配 32
4.3 變速器的設(shè)計與計算 35
4.3.1 齒輪的損壞形式 35
4.3.2 齒輪強度計算 35
4.3.3 軸的強度計算 37
第五章 主減速器的設(shè)計 40
5.1 主減速器傳動比與計算載荷的確定 40
5.1.1 主減速器傳動比的確定 40
5.1.2 主減速器齒輪計算載荷的確定 40
5.2 主減速器錐齒輪主要參數(shù)的選擇 42
5.3 主減速器錐齒輪強度計算 44
5.4 錐齒輪材料 45
第六章 差速器的設(shè)計 47
6.1 普通錐齒輪差速器齒輪的設(shè)計 47
6.2 差速器齒輪強度計算 48
第七章 結(jié)論 49
7.1 總結(jié) 49
7.1.1 主要工作及結(jié)論 49
7.1.2 存在的問題 49
7.2 設(shè)計體會 49
致謝 51
參考文獻 52
附錄A:英文資料 53
附錄B:英文翻譯 63
附錄C:參數(shù)表 72
IV
南京工程學(xué)院車輛工程系本科畢業(yè)設(shè)計(論文)
致 謝
本論文是在我的導(dǎo)師鄒政耀的悉心指導(dǎo)下完成的。非常感謝鄒老師給我提供該課題及設(shè)計中遇到的問題給以耐心、透徹的解答和幫助。鄒老師精深淵博的學(xué)識、豁達的性格、孜孜以求、忘我的工作熱情都將使我終生受益。我不僅學(xué)到了扎實、寬廣的專業(yè)知識,也學(xué)到了做人的道理。在此我要向我的導(dǎo)師致以最衷心的感謝和深深的敬意。
在我的設(shè)計撰寫過程中,汽車教研室的許多老師給我提出了很多寶貴意見和建議,向他們表示深深的感謝。
在多年的學(xué)習(xí)生活中,還得到了許多學(xué)院領(lǐng)導(dǎo)、系領(lǐng)導(dǎo)和老師的熱情關(guān)心和幫助。
我還要感謝我的同窗好友們以及所有關(guān)心過我的親人、朋友們,謝謝他們對我的支持與鼓勵。
衷心地感謝在百忙之中評閱我的設(shè)計和參加答辯的各位老師!
唐明亮
2010年6月 于 南京
51
南京工程學(xué)院車輛工程系本科畢業(yè)設(shè)計(論文)
參考文獻
[1] 方景瑞,國內(nèi)外混合動力汽車技術(shù)[J].拖拉機與農(nóng)用運輸車,2005(5):1-3.
[2] 諸自強,黃毓琛,鄒國棠等.陳清泉院士論文選集:現(xiàn)代電動車電機驅(qū)動及電力電子技術(shù)[M].北京,機械工業(yè)出版社,2005.9.
[3] 陳清泉,孫立清,電動汽車的現(xiàn)狀和發(fā)展趨勢[J].科技導(dǎo)報,2005, 23(4):24-28.
[4] 吳光強,鞠麗娟,羅邦杰.車輛混合傳動系統(tǒng)開發(fā)現(xiàn)狀與展望[J].汽車工程,1997,19(2):78-82.
[5] 廣瀨久士,丹下昭二. 電動車及混合動力車的現(xiàn)狀與展望[J].汽車工程,2003,25(2):204-209.
[6] 殷德雙.混合動力電動汽車WG6120HD多能源控制系統(tǒng)[D].武漢:武漢理工大學(xué),2003.
[7] 常志江.混合動力電動汽車動力系統(tǒng)匹配性研究[D].西安:西北工業(yè)大學(xué),2004.
[8] 王鵬輝.并聯(lián)混合動力公交底盤總體設(shè)計[J].合肥工業(yè)大學(xué)學(xué)報,2009,32:35-37.
[9] 舒真.日產(chǎn)“tino HYBRID”新型環(huán)保車[J].汽車維修與保養(yǎng),2000(6):24.
[10] Morita K. Automotive power source in 21st century. JSAE Review, 2003, 24(1):3-7.
[11] 王曉明,吳志新.混合動力電動汽車[J].世界汽車,2004(1):30~32.
[12] Isaya Matsuo, Takeshi Myiamoto. The Nissan Hybrid Vehicle. Society of Automotive Engineers, 2000-01-1568.
[13] 徐衛(wèi)國.混合動力汽車的發(fā)展?fàn)顩r及前景初探[J].汽車科技.2001(1):7~9.
[14] 岳東鵬,郝志勇,張俊智.混合動力電動汽車研究開發(fā)及前景展望[J].拖拉機與農(nóng)用運輸車.2004(2):1~4.
[15] 葉玲,楊志偉,李昆.混合動力電動汽車的發(fā)展[J].北京汽車. 2002(6):11~15.
[16]李東軍,郁增德,李理光.中國典型城市車輛行駛狀況的測試統(tǒng)計.汽車技術(shù),1998(3):13-16.
[17]鎖國濤,武漢市公交車行駛工況及發(fā)動機循環(huán)工況的研究.武漢:武漢理工大學(xué),2006
[18]張俊智,盧青春,土麗芳.駕駛循環(huán)對車輛能量經(jīng)濟性影響的研究.汽車工程,2000, 22(5):320~349.
[19] 步曦,陳禮墻.以行駛循環(huán)為基礎(chǔ)的混合動力分析研究,車輛與動力技術(shù),2007(2):29-34.
[20] 陳清泉,孫逢春,祝嘉光.現(xiàn)代電動汽車技術(shù)[M].北京:北京理工大學(xué)出版,2002 121-152.
[21] 鄒政耀,陳曉東.城市公交車機電復(fù)合制動能量回收系統(tǒng)研究[P].
[22] 機械設(shè)計手冊[M].機械工業(yè)出版社.2007:14-30.
[23] 徐錦康. 機械設(shè)計[M]. 高等教育出版社. 2003(4):42-48.
[24] 王望予. 汽車設(shè)計[M]. 機械工業(yè)出版社.2004(4):89-99.
52
南京工程學(xué)院車輛工程系本科畢業(yè)設(shè)計(論文)
附錄A:英文資料
STEADY-STATE AND IDLE OPTIMIZATION OF INTERNAL COMBUSTION ENGINE CONTROL STRATEGIES FOR HYBRID ELECTRIC VEHICLES
Abstract:A novel steady-state optimization (SS0) of internal combustion engine (ICE) strategy is proposed to maximize the efficiency of the overall power train for hybrid electric vehicles, in which the ICE efficiency, the efficiencies of the electric motor (EM) and the energy storage device are all explicitly taken into account. In addition, a novel idle optimization of ICE strategy is implemented to obtain the optimal idle operating point of the ICE and corresponding optimal parking generation power of the EM using the view of the novel SSO of ICE strategy. Simulations results show that potential fuel economy improvement is achieved relative to the conventional one which only optimized the ICE efficiency by the novel SSO of ICE strategy and fuel consumption per voltage increment decreases a lot during the parking charge by the novel idle optimization of ICE strategy.
Key words:Hybrid electric vehicle Internal combustion engine Steady-state optimization Idle optimization Energy conversion
0 INTRODUCTION
Internal combustion engine (ICE) which runs at high efficiency operating points or regions [1] can effectively improve fuel economy in hybrid electric vehicles (HEVs). Steady-state optimization (SSO) of ICE can achieve this task by using the characteristic of the electric motor (EM). The SSO of ICE can maintain the voltage balance of the energy storage device [2], such as an ultra capacitor in this study. The process of SSO of ICE is that the ICE torque increases by widening the electric throttle, and the ICE speed keeps constant. The increment of ICE torque drives the EM to charge the ultra capacitor. Later, the energy stored in the ultra capacitor can be re-used to propel the vehicle during subsequent acceleration. The SSO of ICE increases its efficiency active charge. The questions that must be solved include: What is the optimal operating point of the ICE? What is the optimal generation power of the EM during the SSO of ICE?
The conventional SSO of ICE control strategy is based on optimizing the ICE’ efficiency. The main problem of the conventional strategy did not take the efficiencies of the others power station components into account, such as the EM and the ultra capacitor. When the power transfers among the overall power train, the power losses are severe.
During parking,if the ultra capacitor voltage is lower than certain level,the ICE cannot Autos top. The ICE has to run at the idle operating point and produce more power than that of the conventional idle to drive the EM to charge the ultra capacitor. Therefore, the problem of idle optimization of ICE is coming.
The current research has two aims: to formulate a novel SSO of ICE strategy to maximize the efficiency of the overall power train; to propose a novel idle optimization of ICE strategy to find the optimal idle operating point of the ICE and corresponding optimal parking generation power of the EM using the view of the novel SSO of ICE strategy.
1 SYSTEM CONFIGURATION
The configuration of a parallel (ISG) HEV is shown in Fig. 1.
Fig.1 Configuration of a parallel ISG HEV
,―Speed of ICE and EM
―Torque of ICE
―Power of ICE
The parameters of the vehicle and power train are shown in Table 1.
Table 1 Parameters of the vehicle and power train
Component
Parameter
Value
Vehicle
Mass of the vehicle m/kg
Drag coefficient CD
Frontal area A/m2
Tire radius r/m
Final drive ratio
Gearbox ratio
1300
0.335
1.8
0.19
4.31
3.18-0.70
ICE
Displacement V/L
Maximal power
1.5
62
EM
Maximal power
Base speed
6
1500
Ultra capacitor
Rated voltage U/V
Capability C/F
42
200
Because an ICE and an EM are connected via one single shaft, equals.
Fig. 1 shows that there are two vehicles. When the EM is used energy paths to propel the from an ultra capacitor charged earlier by the ICE [3].The efficiency of the power flow from the ICE to the EM that is used as a generator, to the ultra capacitor during charging, and then from the ultra capacitor during discharging, to the EM that is used as a motor has to be analyzed. The power losses are at least 15% for this specific ISG HEV
Frequently and quickly charging and discharging of the ultra capacitor can be used to improve fuel economy.
2 STEADY-STATE OPTIMIZATION
The characteristic of the 1.5 L gasoline engine is displayed in Fig. 2
Fig.2 Characteristics of the 1.5L gasoline engine
The solid and dotted curves represent the ICE torque with the maximal efficiency () and the maximal ICE torque (), respectively. Fig 2 shows that for a fixed, the specific fuel consumption of the ICE (b) decreases as increases until reaches. Unfortunately, it increases on the contrary when is above to.
The ICE operating point is directed to change from one to two, while keeping constant, shown in Fig. 2. Because of the power train capacity restriction, the maximal value of defined as is the minimal value of +and. is the maximal generation torque of the EM under .
3 IDLE OPTIMIZATION
For the SSO of ICE, The variable keeps constant. It is the problem of single parameter optimization, which is . Howe ever, for the idle optimization of ICE, it is the problem of two parameters optimization, which are and.
The method of the conventional idle optimization of ICE strategy is that lower ultra capacitor voltage is, the bigger ICE torque is. In addition, the idle speed () and torque () of the conventional strategy can be represented as
=c
Tidlepre=U1TmU1-U2×U-U20 Umin?U
收藏